MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rng2idl0 Structured version   Visualization version   GIF version

Theorem rng2idl0 21233
Description: The zero (additive identity) of a non-unital ring is an element of each two-sided ideal of the ring which is a non-unital ring. (Contributed by AV, 20-Feb-2025.)
Hypotheses
Ref Expression
rng2idlsubrng.r (𝜑𝑅 ∈ Rng)
rng2idlsubrng.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rng2idlsubrng.u (𝜑 → (𝑅s 𝐼) ∈ Rng)
Assertion
Ref Expression
rng2idl0 (𝜑 → (0g𝑅) ∈ 𝐼)

Proof of Theorem rng2idl0
StepHypRef Expression
1 rng2idlsubrng.r . . 3 (𝜑𝑅 ∈ Rng)
2 rng2idlsubrng.i . . 3 (𝜑𝐼 ∈ (2Ideal‘𝑅))
3 rng2idlsubrng.u . . 3 (𝜑 → (𝑅s 𝐼) ∈ Rng)
41, 2, 3rng2idlsubrng 21231 . 2 (𝜑𝐼 ∈ (SubRng‘𝑅))
5 subrngsubg 20517 . 2 (𝐼 ∈ (SubRng‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅))
6 eqid 2736 . . 3 (0g𝑅) = (0g𝑅)
76subg0cl 19122 . 2 (𝐼 ∈ (SubGrp‘𝑅) → (0g𝑅) ∈ 𝐼)
84, 5, 73syl 18 1 (𝜑 → (0g𝑅) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cfv 6536  (class class class)co 7410  s cress 17256  0gc0g 17458  SubGrpcsubg 19108  Rngcrng 20117  SubRngcsubrng 20510  2Idealc2idl 21215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-sca 17292  df-vsca 17293  df-ip 17294  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-subg 19111  df-abl 19769  df-rng 20118  df-subrng 20511  df-lss 20894  df-sra 21136  df-rgmod 21137  df-lidl 21174  df-2idl 21216
This theorem is referenced by:  rngqiprngghmlem1  21253  rngqiprngimf  21263  rngqiprngimf1  21266
  Copyright terms: Public domain W3C validator