MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppofss2d Structured version   Visualization version   GIF version

Theorem suppofss2d 8144
Description: Condition for the support of a function operation to be a subset of the support of the right function term. (Contributed by Thierry Arnoux, 21-Jun-2019.)
Hypotheses
Ref Expression
suppofssd.1 (𝜑𝐴𝑉)
suppofssd.2 (𝜑𝑍𝐵)
suppofssd.3 (𝜑𝐹:𝐴𝐵)
suppofssd.4 (𝜑𝐺:𝐴𝐵)
suppofss2d.5 ((𝜑𝑥𝐵) → (𝑥𝑋𝑍) = 𝑍)
Assertion
Ref Expression
suppofss2d (𝜑 → ((𝐹f 𝑋𝐺) supp 𝑍) ⊆ (𝐺 supp 𝑍))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝑥,𝑋   𝑥,𝑍   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem suppofss2d
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 suppofssd.3 . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
21ffnd 6660 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
3 suppofssd.4 . . . . . . . 8 (𝜑𝐺:𝐴𝐵)
43ffnd 6660 . . . . . . 7 (𝜑𝐺 Fn 𝐴)
5 suppofssd.1 . . . . . . 7 (𝜑𝐴𝑉)
6 inidm 4176 . . . . . . 7 (𝐴𝐴) = 𝐴
7 eqidd 2734 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐹𝑦) = (𝐹𝑦))
8 eqidd 2734 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐺𝑦) = (𝐺𝑦))
92, 4, 5, 5, 6, 7, 8ofval 7630 . . . . . 6 ((𝜑𝑦𝐴) → ((𝐹f 𝑋𝐺)‘𝑦) = ((𝐹𝑦)𝑋(𝐺𝑦)))
109adantr 480 . . . . 5 (((𝜑𝑦𝐴) ∧ (𝐺𝑦) = 𝑍) → ((𝐹f 𝑋𝐺)‘𝑦) = ((𝐹𝑦)𝑋(𝐺𝑦)))
11 simpr 484 . . . . . 6 (((𝜑𝑦𝐴) ∧ (𝐺𝑦) = 𝑍) → (𝐺𝑦) = 𝑍)
1211oveq2d 7371 . . . . 5 (((𝜑𝑦𝐴) ∧ (𝐺𝑦) = 𝑍) → ((𝐹𝑦)𝑋(𝐺𝑦)) = ((𝐹𝑦)𝑋𝑍))
13 suppofss2d.5 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑥𝑋𝑍) = 𝑍)
1413ralrimiva 3125 . . . . . . . 8 (𝜑 → ∀𝑥𝐵 (𝑥𝑋𝑍) = 𝑍)
1514adantr 480 . . . . . . 7 ((𝜑𝑦𝐴) → ∀𝑥𝐵 (𝑥𝑋𝑍) = 𝑍)
161ffvelcdmda 7026 . . . . . . . 8 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ 𝐵)
17 simpr 484 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ 𝑥 = (𝐹𝑦)) → 𝑥 = (𝐹𝑦))
1817oveq1d 7370 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑥 = (𝐹𝑦)) → (𝑥𝑋𝑍) = ((𝐹𝑦)𝑋𝑍))
1918eqeq1d 2735 . . . . . . . 8 (((𝜑𝑦𝐴) ∧ 𝑥 = (𝐹𝑦)) → ((𝑥𝑋𝑍) = 𝑍 ↔ ((𝐹𝑦)𝑋𝑍) = 𝑍))
2016, 19rspcdv 3565 . . . . . . 7 ((𝜑𝑦𝐴) → (∀𝑥𝐵 (𝑥𝑋𝑍) = 𝑍 → ((𝐹𝑦)𝑋𝑍) = 𝑍))
2115, 20mpd 15 . . . . . 6 ((𝜑𝑦𝐴) → ((𝐹𝑦)𝑋𝑍) = 𝑍)
2221adantr 480 . . . . 5 (((𝜑𝑦𝐴) ∧ (𝐺𝑦) = 𝑍) → ((𝐹𝑦)𝑋𝑍) = 𝑍)
2310, 12, 223eqtrd 2772 . . . 4 (((𝜑𝑦𝐴) ∧ (𝐺𝑦) = 𝑍) → ((𝐹f 𝑋𝐺)‘𝑦) = 𝑍)
2423ex 412 . . 3 ((𝜑𝑦𝐴) → ((𝐺𝑦) = 𝑍 → ((𝐹f 𝑋𝐺)‘𝑦) = 𝑍))
2524ralrimiva 3125 . 2 (𝜑 → ∀𝑦𝐴 ((𝐺𝑦) = 𝑍 → ((𝐹f 𝑋𝐺)‘𝑦) = 𝑍))
262, 4, 5, 5, 6offn 7632 . . 3 (𝜑 → (𝐹f 𝑋𝐺) Fn 𝐴)
27 ssidd 3954 . . 3 (𝜑𝐴𝐴)
28 suppofssd.2 . . 3 (𝜑𝑍𝐵)
29 suppfnss 8128 . . 3 ((((𝐹f 𝑋𝐺) Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐴𝐴𝐴𝑉𝑍𝐵)) → (∀𝑦𝐴 ((𝐺𝑦) = 𝑍 → ((𝐹f 𝑋𝐺)‘𝑦) = 𝑍) → ((𝐹f 𝑋𝐺) supp 𝑍) ⊆ (𝐺 supp 𝑍)))
3026, 4, 27, 5, 28, 29syl23anc 1379 . 2 (𝜑 → (∀𝑦𝐴 ((𝐺𝑦) = 𝑍 → ((𝐹f 𝑋𝐺)‘𝑦) = 𝑍) → ((𝐹f 𝑋𝐺) supp 𝑍) ⊆ (𝐺 supp 𝑍)))
3125, 30mpd 15 1 (𝜑 → ((𝐹f 𝑋𝐺) supp 𝑍) ⊆ (𝐺 supp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  wss 3898   Fn wfn 6484  wf 6485  cfv 6489  (class class class)co 7355  f cof 7617   supp csupp 8099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-supp 8100
This theorem is referenced by:  frlmphl  21727
  Copyright terms: Public domain W3C validator