Step | Hyp | Ref
| Expression |
1 | | suppofssd.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
2 | 1 | ffnd 6631 |
. . . . . . 7
⊢ (𝜑 → 𝐹 Fn 𝐴) |
3 | | suppofssd.4 |
. . . . . . . 8
⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
4 | 3 | ffnd 6631 |
. . . . . . 7
⊢ (𝜑 → 𝐺 Fn 𝐴) |
5 | | suppofssd.1 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
6 | | inidm 4158 |
. . . . . . 7
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
7 | | eqidd 2737 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) = (𝐹‘𝑦)) |
8 | | eqidd 2737 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐺‘𝑦) = (𝐺‘𝑦)) |
9 | 2, 4, 5, 5, 6, 7, 8 | ofval 7576 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝐹 ∘f 𝑋𝐺)‘𝑦) = ((𝐹‘𝑦)𝑋(𝐺‘𝑦))) |
10 | 9 | adantr 482 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ (𝐺‘𝑦) = 𝑍) → ((𝐹 ∘f 𝑋𝐺)‘𝑦) = ((𝐹‘𝑦)𝑋(𝐺‘𝑦))) |
11 | | simpr 486 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ (𝐺‘𝑦) = 𝑍) → (𝐺‘𝑦) = 𝑍) |
12 | 11 | oveq2d 7323 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ (𝐺‘𝑦) = 𝑍) → ((𝐹‘𝑦)𝑋(𝐺‘𝑦)) = ((𝐹‘𝑦)𝑋𝑍)) |
13 | | suppofss2d.5 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥𝑋𝑍) = 𝑍) |
14 | 13 | ralrimiva 3140 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝑥𝑋𝑍) = 𝑍) |
15 | 14 | adantr 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ∀𝑥 ∈ 𝐵 (𝑥𝑋𝑍) = 𝑍) |
16 | 1 | ffvelcdmda 6993 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ 𝐵) |
17 | | simpr 486 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 = (𝐹‘𝑦)) → 𝑥 = (𝐹‘𝑦)) |
18 | 17 | oveq1d 7322 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 = (𝐹‘𝑦)) → (𝑥𝑋𝑍) = ((𝐹‘𝑦)𝑋𝑍)) |
19 | 18 | eqeq1d 2738 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 = (𝐹‘𝑦)) → ((𝑥𝑋𝑍) = 𝑍 ↔ ((𝐹‘𝑦)𝑋𝑍) = 𝑍)) |
20 | 16, 19 | rspcdv 3558 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (∀𝑥 ∈ 𝐵 (𝑥𝑋𝑍) = 𝑍 → ((𝐹‘𝑦)𝑋𝑍) = 𝑍)) |
21 | 15, 20 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝐹‘𝑦)𝑋𝑍) = 𝑍) |
22 | 21 | adantr 482 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ (𝐺‘𝑦) = 𝑍) → ((𝐹‘𝑦)𝑋𝑍) = 𝑍) |
23 | 10, 12, 22 | 3eqtrd 2780 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ (𝐺‘𝑦) = 𝑍) → ((𝐹 ∘f 𝑋𝐺)‘𝑦) = 𝑍) |
24 | 23 | ex 414 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝐺‘𝑦) = 𝑍 → ((𝐹 ∘f 𝑋𝐺)‘𝑦) = 𝑍)) |
25 | 24 | ralrimiva 3140 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ((𝐺‘𝑦) = 𝑍 → ((𝐹 ∘f 𝑋𝐺)‘𝑦) = 𝑍)) |
26 | 2, 4, 5, 5, 6 | offn 7578 |
. . 3
⊢ (𝜑 → (𝐹 ∘f 𝑋𝐺) Fn 𝐴) |
27 | | ssidd 3949 |
. . 3
⊢ (𝜑 → 𝐴 ⊆ 𝐴) |
28 | | suppofssd.2 |
. . 3
⊢ (𝜑 → 𝑍 ∈ 𝐵) |
29 | | suppfnss 8036 |
. . 3
⊢ ((((𝐹 ∘f 𝑋𝐺) Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐴 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝐵)) → (∀𝑦 ∈ 𝐴 ((𝐺‘𝑦) = 𝑍 → ((𝐹 ∘f 𝑋𝐺)‘𝑦) = 𝑍) → ((𝐹 ∘f 𝑋𝐺) supp 𝑍) ⊆ (𝐺 supp 𝑍))) |
30 | 26, 4, 27, 5, 28, 29 | syl23anc 1377 |
. 2
⊢ (𝜑 → (∀𝑦 ∈ 𝐴 ((𝐺‘𝑦) = 𝑍 → ((𝐹 ∘f 𝑋𝐺)‘𝑦) = 𝑍) → ((𝐹 ∘f 𝑋𝐺) supp 𝑍) ⊆ (𝐺 supp 𝑍))) |
31 | 25, 30 | mpd 15 |
1
⊢ (𝜑 → ((𝐹 ∘f 𝑋𝐺) supp 𝑍) ⊆ (𝐺 supp 𝑍)) |