MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppofss2d Structured version   Visualization version   GIF version

Theorem suppofss2d 8008
Description: Condition for the support of a function operation to be a subset of the support of the right function term. (Contributed by Thierry Arnoux, 21-Jun-2019.)
Hypotheses
Ref Expression
suppofssd.1 (𝜑𝐴𝑉)
suppofssd.2 (𝜑𝑍𝐵)
suppofssd.3 (𝜑𝐹:𝐴𝐵)
suppofssd.4 (𝜑𝐺:𝐴𝐵)
suppofss2d.5 ((𝜑𝑥𝐵) → (𝑥𝑋𝑍) = 𝑍)
Assertion
Ref Expression
suppofss2d (𝜑 → ((𝐹f 𝑋𝐺) supp 𝑍) ⊆ (𝐺 supp 𝑍))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝑥,𝑋   𝑥,𝑍   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem suppofss2d
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 suppofssd.3 . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
21ffnd 6593 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
3 suppofssd.4 . . . . . . . 8 (𝜑𝐺:𝐴𝐵)
43ffnd 6593 . . . . . . 7 (𝜑𝐺 Fn 𝐴)
5 suppofssd.1 . . . . . . 7 (𝜑𝐴𝑉)
6 inidm 4152 . . . . . . 7 (𝐴𝐴) = 𝐴
7 eqidd 2739 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐹𝑦) = (𝐹𝑦))
8 eqidd 2739 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐺𝑦) = (𝐺𝑦))
92, 4, 5, 5, 6, 7, 8ofval 7534 . . . . . 6 ((𝜑𝑦𝐴) → ((𝐹f 𝑋𝐺)‘𝑦) = ((𝐹𝑦)𝑋(𝐺𝑦)))
109adantr 481 . . . . 5 (((𝜑𝑦𝐴) ∧ (𝐺𝑦) = 𝑍) → ((𝐹f 𝑋𝐺)‘𝑦) = ((𝐹𝑦)𝑋(𝐺𝑦)))
11 simpr 485 . . . . . 6 (((𝜑𝑦𝐴) ∧ (𝐺𝑦) = 𝑍) → (𝐺𝑦) = 𝑍)
1211oveq2d 7283 . . . . 5 (((𝜑𝑦𝐴) ∧ (𝐺𝑦) = 𝑍) → ((𝐹𝑦)𝑋(𝐺𝑦)) = ((𝐹𝑦)𝑋𝑍))
13 suppofss2d.5 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑥𝑋𝑍) = 𝑍)
1413ralrimiva 3108 . . . . . . . 8 (𝜑 → ∀𝑥𝐵 (𝑥𝑋𝑍) = 𝑍)
1514adantr 481 . . . . . . 7 ((𝜑𝑦𝐴) → ∀𝑥𝐵 (𝑥𝑋𝑍) = 𝑍)
161ffvelrnda 6953 . . . . . . . 8 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ 𝐵)
17 simpr 485 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ 𝑥 = (𝐹𝑦)) → 𝑥 = (𝐹𝑦))
1817oveq1d 7282 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑥 = (𝐹𝑦)) → (𝑥𝑋𝑍) = ((𝐹𝑦)𝑋𝑍))
1918eqeq1d 2740 . . . . . . . 8 (((𝜑𝑦𝐴) ∧ 𝑥 = (𝐹𝑦)) → ((𝑥𝑋𝑍) = 𝑍 ↔ ((𝐹𝑦)𝑋𝑍) = 𝑍))
2016, 19rspcdv 3550 . . . . . . 7 ((𝜑𝑦𝐴) → (∀𝑥𝐵 (𝑥𝑋𝑍) = 𝑍 → ((𝐹𝑦)𝑋𝑍) = 𝑍))
2115, 20mpd 15 . . . . . 6 ((𝜑𝑦𝐴) → ((𝐹𝑦)𝑋𝑍) = 𝑍)
2221adantr 481 . . . . 5 (((𝜑𝑦𝐴) ∧ (𝐺𝑦) = 𝑍) → ((𝐹𝑦)𝑋𝑍) = 𝑍)
2310, 12, 223eqtrd 2782 . . . 4 (((𝜑𝑦𝐴) ∧ (𝐺𝑦) = 𝑍) → ((𝐹f 𝑋𝐺)‘𝑦) = 𝑍)
2423ex 413 . . 3 ((𝜑𝑦𝐴) → ((𝐺𝑦) = 𝑍 → ((𝐹f 𝑋𝐺)‘𝑦) = 𝑍))
2524ralrimiva 3108 . 2 (𝜑 → ∀𝑦𝐴 ((𝐺𝑦) = 𝑍 → ((𝐹f 𝑋𝐺)‘𝑦) = 𝑍))
262, 4, 5, 5, 6offn 7536 . . 3 (𝜑 → (𝐹f 𝑋𝐺) Fn 𝐴)
27 ssidd 3943 . . 3 (𝜑𝐴𝐴)
28 suppofssd.2 . . 3 (𝜑𝑍𝐵)
29 suppfnss 7992 . . 3 ((((𝐹f 𝑋𝐺) Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐴𝐴𝐴𝑉𝑍𝐵)) → (∀𝑦𝐴 ((𝐺𝑦) = 𝑍 → ((𝐹f 𝑋𝐺)‘𝑦) = 𝑍) → ((𝐹f 𝑋𝐺) supp 𝑍) ⊆ (𝐺 supp 𝑍)))
3026, 4, 27, 5, 28, 29syl23anc 1376 . 2 (𝜑 → (∀𝑦𝐴 ((𝐺𝑦) = 𝑍 → ((𝐹f 𝑋𝐺)‘𝑦) = 𝑍) → ((𝐹f 𝑋𝐺) supp 𝑍) ⊆ (𝐺 supp 𝑍)))
3125, 30mpd 15 1 (𝜑 → ((𝐹f 𝑋𝐺) supp 𝑍) ⊆ (𝐺 supp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  wss 3886   Fn wfn 6421  wf 6422  cfv 6426  (class class class)co 7267  f cof 7521   supp csupp 7964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pr 5350  ax-un 7578
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-id 5484  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-ov 7270  df-oprab 7271  df-mpo 7272  df-of 7523  df-supp 7965
This theorem is referenced by:  frlmphl  20998
  Copyright terms: Public domain W3C validator