Step | Hyp | Ref
| Expression |
1 | | decpmate.c |
. . . . . 6
⊢ 𝐶 = (𝑁 Mat 𝑃) |
2 | | decpmate.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐶) |
3 | 1, 2 | matrcl 21559 |
. . . . 5
⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑃 ∈ V)) |
4 | 3 | simpld 495 |
. . . 4
⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
5 | 4 | adantl 482 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑁 ∈ Fin) |
6 | | simpl 483 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) |
7 | | simpr 485 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) |
8 | | decpmate.p |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
9 | | eqid 2738 |
. . . 4
⊢
(0g‘𝑅) = (0g‘𝑅) |
10 | 8, 1, 2, 9 | pmatcoe1fsupp 21850 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑠 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g‘𝑅))) |
11 | 5, 6, 7, 10 | syl3anc 1370 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑠 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g‘𝑅))) |
12 | | decpmatcl.a |
. . . . . . . . 9
⊢ 𝐴 = (𝑁 Mat 𝑅) |
13 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝐴) =
(Base‘𝐴) |
14 | 8, 1, 2, 12, 13 | decpmatcl 21916 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑥 ∈ ℕ0) → (𝑀 decompPMat 𝑥) ∈ (Base‘𝐴)) |
15 | 14 | 3expa 1117 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑀 decompPMat 𝑥) ∈ (Base‘𝐴)) |
16 | 5, 6 | jca 512 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
17 | 12 | matring 21592 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
18 | | decpmatfsupp.0 |
. . . . . . . . . 10
⊢ 0 =
(0g‘𝐴) |
19 | 13, 18 | ring0cl 19808 |
. . . . . . . . 9
⊢ (𝐴 ∈ Ring → 0 ∈
(Base‘𝐴)) |
20 | 16, 17, 19 | 3syl 18 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 0 ∈ (Base‘𝐴)) |
21 | 20 | adantr 481 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → 0 ∈
(Base‘𝐴)) |
22 | 12, 13 | eqmat 21573 |
. . . . . . 7
⊢ (((𝑀 decompPMat 𝑥) ∈ (Base‘𝐴) ∧ 0 ∈ (Base‘𝐴)) → ((𝑀 decompPMat 𝑥) = 0 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑀 decompPMat 𝑥)𝑗) = (𝑖 0 𝑗))) |
23 | 15, 21, 22 | syl2anc 584 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑀 decompPMat 𝑥) = 0 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑀 decompPMat 𝑥)𝑗) = (𝑖 0 𝑗))) |
24 | | df-3an 1088 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑥 ∈ ℕ0) ↔ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈
ℕ0)) |
25 | 8, 1, 2 | decpmate 21915 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑥 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑀 decompPMat 𝑥)𝑗) = ((coe1‘(𝑖𝑀𝑗))‘𝑥)) |
26 | 24, 25 | sylanbr 582 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖(𝑀 decompPMat 𝑥)𝑗) = ((coe1‘(𝑖𝑀𝑗))‘𝑥)) |
27 | 16 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
28 | 27 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
29 | 12, 9 | mat0op 21568 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(0g‘𝐴) =
(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ (0g‘𝑅))) |
30 | 18, 29 | eqtrid 2790 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ (0g‘𝑅))) |
31 | 28, 30 | syl 17 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 0 = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ (0g‘𝑅))) |
32 | | eqidd 2739 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ Ring
∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑎 = 𝑖 ∧ 𝑏 = 𝑗)) → (0g‘𝑅) = (0g‘𝑅)) |
33 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
34 | 33 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ 𝑁) |
35 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
36 | 35 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ 𝑁) |
37 | | fvexd 6789 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (0g‘𝑅) ∈ V) |
38 | 31, 32, 34, 36, 37 | ovmpod 7425 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖 0 𝑗) = (0g‘𝑅)) |
39 | 26, 38 | eqeq12d 2754 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((𝑖(𝑀 decompPMat 𝑥)𝑗) = (𝑖 0 𝑗) ↔ ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g‘𝑅))) |
40 | 39 | 2ralbidva 3128 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) →
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖(𝑀 decompPMat 𝑥)𝑗) = (𝑖 0 𝑗) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g‘𝑅))) |
41 | 23, 40 | bitrd 278 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑀 decompPMat 𝑥) = 0 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g‘𝑅))) |
42 | 41 | imbi2d 341 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → (𝑀 decompPMat 𝑥) = 0 ) ↔ (𝑠 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g‘𝑅)))) |
43 | 42 | ralbidva 3111 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝑀 decompPMat 𝑥) = 0 ) ↔ ∀𝑥 ∈ ℕ0
(𝑠 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g‘𝑅)))) |
44 | 43 | rexbidv 3226 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑠 < 𝑥 → (𝑀 decompPMat 𝑥) = 0 ) ↔ ∃𝑠 ∈ ℕ0
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g‘𝑅)))) |
45 | 11, 44 | mpbird 256 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑠 < 𝑥 → (𝑀 decompPMat 𝑥) = 0 )) |