MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmataa0 Structured version   Visualization version   GIF version

Theorem decpmataa0 22655
Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power is 0 for almost all powers. (Contributed by AV, 3-Nov-2019.) (Revised by AV, 3-Dec-2019.)
Hypotheses
Ref Expression
decpmate.p 𝑃 = (Poly1𝑅)
decpmate.c 𝐶 = (𝑁 Mat 𝑃)
decpmate.b 𝐵 = (Base‘𝐶)
decpmatcl.a 𝐴 = (𝑁 Mat 𝑅)
decpmatfsupp.0 0 = (0g𝐴)
Assertion
Ref Expression
decpmataa0 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝑀 decompPMat 𝑥) = 0 ))
Distinct variable groups:   𝐵,𝑠,𝑥   𝑀,𝑠,𝑥   𝑁,𝑠,𝑥   𝑅,𝑠,𝑥   0 ,𝑠,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑠)   𝐶(𝑥,𝑠)   𝑃(𝑥,𝑠)

Proof of Theorem decpmataa0
Dummy variables 𝑖 𝑗 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 decpmate.c . . . . . 6 𝐶 = (𝑁 Mat 𝑃)
2 decpmate.b . . . . . 6 𝐵 = (Base‘𝐶)
31, 2matrcl 22299 . . . . 5 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑃 ∈ V))
43simpld 494 . . . 4 (𝑀𝐵𝑁 ∈ Fin)
54adantl 481 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
6 simpl 482 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
7 simpr 484 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑀𝐵)
8 decpmate.p . . . 4 𝑃 = (Poly1𝑅)
9 eqid 2729 . . . 4 (0g𝑅) = (0g𝑅)
108, 1, 2, 9pmatcoe1fsupp 22588 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)))
115, 6, 7, 10syl3anc 1373 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)))
12 decpmatcl.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
13 eqid 2729 . . . . . . . . 9 (Base‘𝐴) = (Base‘𝐴)
148, 1, 2, 12, 13decpmatcl 22654 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑀𝐵𝑥 ∈ ℕ0) → (𝑀 decompPMat 𝑥) ∈ (Base‘𝐴))
15143expa 1118 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑀 decompPMat 𝑥) ∈ (Base‘𝐴))
165, 6jca 511 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
1712matring 22330 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
18 decpmatfsupp.0 . . . . . . . . . 10 0 = (0g𝐴)
1913, 18ring0cl 20176 . . . . . . . . 9 (𝐴 ∈ Ring → 0 ∈ (Base‘𝐴))
2016, 17, 193syl 18 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 0 ∈ (Base‘𝐴))
2120adantr 480 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → 0 ∈ (Base‘𝐴))
2212, 13eqmat 22311 . . . . . . 7 (((𝑀 decompPMat 𝑥) ∈ (Base‘𝐴) ∧ 0 ∈ (Base‘𝐴)) → ((𝑀 decompPMat 𝑥) = 0 ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑀 decompPMat 𝑥)𝑗) = (𝑖 0 𝑗)))
2315, 21, 22syl2anc 584 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑀 decompPMat 𝑥) = 0 ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑀 decompPMat 𝑥)𝑗) = (𝑖 0 𝑗)))
24 df-3an 1088 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑀𝐵𝑥 ∈ ℕ0) ↔ ((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0))
258, 1, 2decpmate 22653 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑀 decompPMat 𝑥)𝑗) = ((coe1‘(𝑖𝑀𝑗))‘𝑥))
2624, 25sylanbr 582 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑀 decompPMat 𝑥)𝑗) = ((coe1‘(𝑖𝑀𝑗))‘𝑥))
2716adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
2827adantr 480 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
2912, 9mat0op 22306 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑎𝑁, 𝑏𝑁 ↦ (0g𝑅)))
3018, 29eqtrid 2776 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 = (𝑎𝑁, 𝑏𝑁 ↦ (0g𝑅)))
3128, 30syl 17 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 0 = (𝑎𝑁, 𝑏𝑁 ↦ (0g𝑅)))
32 eqidd 2730 . . . . . . . . 9 (((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 = 𝑖𝑏 = 𝑗)) → (0g𝑅) = (0g𝑅))
33 simpl 482 . . . . . . . . . 10 ((𝑖𝑁𝑗𝑁) → 𝑖𝑁)
3433adantl 481 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
35 simpr 484 . . . . . . . . . 10 ((𝑖𝑁𝑗𝑁) → 𝑗𝑁)
3635adantl 481 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
37 fvexd 6873 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (0g𝑅) ∈ V)
3831, 32, 34, 36, 37ovmpod 7541 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖 0 𝑗) = (0g𝑅))
3926, 38eqeq12d 2745 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑖(𝑀 decompPMat 𝑥)𝑗) = (𝑖 0 𝑗) ↔ ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)))
40392ralbidva 3199 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (∀𝑖𝑁𝑗𝑁 (𝑖(𝑀 decompPMat 𝑥)𝑗) = (𝑖 0 𝑗) ↔ ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)))
4123, 40bitrd 279 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑀 decompPMat 𝑥) = 0 ↔ ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)))
4241imbi2d 340 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → (𝑀 decompPMat 𝑥) = 0 ) ↔ (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅))))
4342ralbidva 3154 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝑀 decompPMat 𝑥) = 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅))))
4443rexbidv 3157 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝑀 decompPMat 𝑥) = 0 ) ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅))))
4511, 44mpbird 257 1 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝑀 decompPMat 𝑥) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3447   class class class wbr 5107  cfv 6511  (class class class)co 7387  cmpo 7389  Fincfn 8918   < clt 11208  0cn0 12442  Basecbs 17179  0gc0g 17402  Ringcrg 20142  Poly1cpl1 22061  coe1cco1 22062   Mat cmat 22294   decompPMat cdecpmat 22649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-subrg 20479  df-lmod 20768  df-lss 20838  df-sra 21080  df-rgmod 21081  df-dsmm 21641  df-frlm 21656  df-psr 21818  df-mpl 21820  df-opsr 21822  df-psr1 22064  df-ply1 22066  df-coe1 22067  df-mamu 22278  df-mat 22295  df-decpmat 22650
This theorem is referenced by:  decpmatfsupp  22656  pmatcollpwfi  22669
  Copyright terms: Public domain W3C validator