MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmataa0 Structured version   Visualization version   GIF version

Theorem decpmataa0 20984
Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power is 0 for almost all powers. (Contributed by AV, 3-Nov-2019.) (Revised by AV, 3-Dec-2019.)
Hypotheses
Ref Expression
decpmate.p 𝑃 = (Poly1𝑅)
decpmate.c 𝐶 = (𝑁 Mat 𝑃)
decpmate.b 𝐵 = (Base‘𝐶)
decpmatcl.a 𝐴 = (𝑁 Mat 𝑅)
decpmatfsupp.0 0 = (0g𝐴)
Assertion
Ref Expression
decpmataa0 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝑀 decompPMat 𝑥) = 0 ))
Distinct variable groups:   𝐵,𝑠,𝑥   𝑀,𝑠,𝑥   𝑁,𝑠,𝑥   𝑅,𝑠,𝑥   0 ,𝑠,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑠)   𝐶(𝑥,𝑠)   𝑃(𝑥,𝑠)

Proof of Theorem decpmataa0
Dummy variables 𝑖 𝑗 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 decpmate.c . . . . . 6 𝐶 = (𝑁 Mat 𝑃)
2 decpmate.b . . . . . 6 𝐵 = (Base‘𝐶)
31, 2matrcl 20626 . . . . 5 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑃 ∈ V))
43simpld 490 . . . 4 (𝑀𝐵𝑁 ∈ Fin)
54adantl 475 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
6 simpl 476 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
7 simpr 479 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑀𝐵)
8 decpmate.p . . . 4 𝑃 = (Poly1𝑅)
9 eqid 2778 . . . 4 (0g𝑅) = (0g𝑅)
108, 1, 2, 9pmatcoe1fsupp 20917 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)))
115, 6, 7, 10syl3anc 1439 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)))
12 decpmatcl.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
13 eqid 2778 . . . . . . . . 9 (Base‘𝐴) = (Base‘𝐴)
148, 1, 2, 12, 13decpmatcl 20983 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑀𝐵𝑥 ∈ ℕ0) → (𝑀 decompPMat 𝑥) ∈ (Base‘𝐴))
15143expa 1108 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑀 decompPMat 𝑥) ∈ (Base‘𝐴))
165, 6jca 507 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
1712matring 20657 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
18 decpmatfsupp.0 . . . . . . . . . 10 0 = (0g𝐴)
1913, 18ring0cl 18960 . . . . . . . . 9 (𝐴 ∈ Ring → 0 ∈ (Base‘𝐴))
2016, 17, 193syl 18 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 0 ∈ (Base‘𝐴))
2120adantr 474 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → 0 ∈ (Base‘𝐴))
2212, 13eqmat 20638 . . . . . . 7 (((𝑀 decompPMat 𝑥) ∈ (Base‘𝐴) ∧ 0 ∈ (Base‘𝐴)) → ((𝑀 decompPMat 𝑥) = 0 ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑀 decompPMat 𝑥)𝑗) = (𝑖 0 𝑗)))
2315, 21, 22syl2anc 579 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑀 decompPMat 𝑥) = 0 ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑀 decompPMat 𝑥)𝑗) = (𝑖 0 𝑗)))
24 df-3an 1073 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑀𝐵𝑥 ∈ ℕ0) ↔ ((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0))
258, 1, 2decpmate 20982 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑀 decompPMat 𝑥)𝑗) = ((coe1‘(𝑖𝑀𝑗))‘𝑥))
2624, 25sylanbr 577 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑀 decompPMat 𝑥)𝑗) = ((coe1‘(𝑖𝑀𝑗))‘𝑥))
2716adantr 474 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
2827adantr 474 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
2912, 9mat0op 20633 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑎𝑁, 𝑏𝑁 ↦ (0g𝑅)))
3018, 29syl5eq 2826 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 = (𝑎𝑁, 𝑏𝑁 ↦ (0g𝑅)))
3128, 30syl 17 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 0 = (𝑎𝑁, 𝑏𝑁 ↦ (0g𝑅)))
32 eqidd 2779 . . . . . . . . 9 (((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 = 𝑖𝑏 = 𝑗)) → (0g𝑅) = (0g𝑅))
33 simpl 476 . . . . . . . . . 10 ((𝑖𝑁𝑗𝑁) → 𝑖𝑁)
3433adantl 475 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
35 simpr 479 . . . . . . . . . 10 ((𝑖𝑁𝑗𝑁) → 𝑗𝑁)
3635adantl 475 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
37 fvexd 6463 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (0g𝑅) ∈ V)
3831, 32, 34, 36, 37ovmpt2d 7067 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖 0 𝑗) = (0g𝑅))
3926, 38eqeq12d 2793 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑖(𝑀 decompPMat 𝑥)𝑗) = (𝑖 0 𝑗) ↔ ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)))
40392ralbidva 3170 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (∀𝑖𝑁𝑗𝑁 (𝑖(𝑀 decompPMat 𝑥)𝑗) = (𝑖 0 𝑗) ↔ ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)))
4123, 40bitrd 271 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑀 decompPMat 𝑥) = 0 ↔ ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)))
4241imbi2d 332 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → (𝑀 decompPMat 𝑥) = 0 ) ↔ (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅))))
4342ralbidva 3167 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝑀 decompPMat 𝑥) = 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅))))
4443rexbidv 3237 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝑀 decompPMat 𝑥) = 0 ) ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅))))
4511, 44mpbird 249 1 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝑀 decompPMat 𝑥) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wral 3090  wrex 3091  Vcvv 3398   class class class wbr 4888  cfv 6137  (class class class)co 6924  cmpt2 6926  Fincfn 8243   < clt 10413  0cn0 11646  Basecbs 16259  0gc0g 16490  Ringcrg 18938  Poly1cpl1 19947  coe1cco1 19948   Mat cmat 20621   decompPMat cdecpmat 20978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-ot 4407  df-uni 4674  df-int 4713  df-iun 4757  df-iin 4758  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-1st 7447  df-2nd 7448  df-supp 7579  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-map 8144  df-ixp 8197  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fsupp 8566  df-sup 8638  df-oi 8706  df-card 9100  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11379  df-2 11442  df-3 11443  df-4 11444  df-5 11445  df-6 11446  df-7 11447  df-8 11448  df-9 11449  df-n0 11647  df-z 11733  df-dec 11850  df-uz 11997  df-fz 12648  df-fzo 12789  df-seq 13124  df-hash 13440  df-struct 16261  df-ndx 16262  df-slot 16263  df-base 16265  df-sets 16266  df-ress 16267  df-plusg 16355  df-mulr 16356  df-sca 16358  df-vsca 16359  df-ip 16360  df-tset 16361  df-ple 16362  df-ds 16364  df-hom 16366  df-cco 16367  df-0g 16492  df-gsum 16493  df-prds 16498  df-pws 16500  df-mre 16636  df-mrc 16637  df-acs 16639  df-mgm 17632  df-sgrp 17674  df-mnd 17685  df-mhm 17725  df-submnd 17726  df-grp 17816  df-minusg 17817  df-sbg 17818  df-mulg 17932  df-subg 17979  df-ghm 18046  df-cntz 18137  df-cmn 18585  df-abl 18586  df-mgp 18881  df-ur 18893  df-ring 18940  df-subrg 19174  df-lmod 19261  df-lss 19329  df-sra 19573  df-rgmod 19574  df-psr 19757  df-mpl 19759  df-opsr 19761  df-psr1 19950  df-ply1 19952  df-coe1 19953  df-dsmm 20479  df-frlm 20494  df-mamu 20598  df-mat 20622  df-decpmat 20979
This theorem is referenced by:  decpmatfsupp  20985  pmatcollpwfi  20998
  Copyright terms: Public domain W3C validator