MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmataa0 Structured version   Visualization version   GIF version

Theorem decpmataa0 21080
Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power is 0 for almost all powers. (Contributed by AV, 3-Nov-2019.) (Revised by AV, 3-Dec-2019.)
Hypotheses
Ref Expression
decpmate.p 𝑃 = (Poly1𝑅)
decpmate.c 𝐶 = (𝑁 Mat 𝑃)
decpmate.b 𝐵 = (Base‘𝐶)
decpmatcl.a 𝐴 = (𝑁 Mat 𝑅)
decpmatfsupp.0 0 = (0g𝐴)
Assertion
Ref Expression
decpmataa0 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝑀 decompPMat 𝑥) = 0 ))
Distinct variable groups:   𝐵,𝑠,𝑥   𝑀,𝑠,𝑥   𝑁,𝑠,𝑥   𝑅,𝑠,𝑥   0 ,𝑠,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑠)   𝐶(𝑥,𝑠)   𝑃(𝑥,𝑠)

Proof of Theorem decpmataa0
Dummy variables 𝑖 𝑗 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 decpmate.c . . . . . 6 𝐶 = (𝑁 Mat 𝑃)
2 decpmate.b . . . . . 6 𝐵 = (Base‘𝐶)
31, 2matrcl 20725 . . . . 5 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑃 ∈ V))
43simpld 487 . . . 4 (𝑀𝐵𝑁 ∈ Fin)
54adantl 474 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
6 simpl 475 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
7 simpr 477 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑀𝐵)
8 decpmate.p . . . 4 𝑃 = (Poly1𝑅)
9 eqid 2778 . . . 4 (0g𝑅) = (0g𝑅)
108, 1, 2, 9pmatcoe1fsupp 21013 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)))
115, 6, 7, 10syl3anc 1351 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)))
12 decpmatcl.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
13 eqid 2778 . . . . . . . . 9 (Base‘𝐴) = (Base‘𝐴)
148, 1, 2, 12, 13decpmatcl 21079 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑀𝐵𝑥 ∈ ℕ0) → (𝑀 decompPMat 𝑥) ∈ (Base‘𝐴))
15143expa 1098 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑀 decompPMat 𝑥) ∈ (Base‘𝐴))
165, 6jca 504 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
1712matring 20756 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
18 decpmatfsupp.0 . . . . . . . . . 10 0 = (0g𝐴)
1913, 18ring0cl 19042 . . . . . . . . 9 (𝐴 ∈ Ring → 0 ∈ (Base‘𝐴))
2016, 17, 193syl 18 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 0 ∈ (Base‘𝐴))
2120adantr 473 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → 0 ∈ (Base‘𝐴))
2212, 13eqmat 20737 . . . . . . 7 (((𝑀 decompPMat 𝑥) ∈ (Base‘𝐴) ∧ 0 ∈ (Base‘𝐴)) → ((𝑀 decompPMat 𝑥) = 0 ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑀 decompPMat 𝑥)𝑗) = (𝑖 0 𝑗)))
2315, 21, 22syl2anc 576 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑀 decompPMat 𝑥) = 0 ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑀 decompPMat 𝑥)𝑗) = (𝑖 0 𝑗)))
24 df-3an 1070 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑀𝐵𝑥 ∈ ℕ0) ↔ ((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0))
258, 1, 2decpmate 21078 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑀 decompPMat 𝑥)𝑗) = ((coe1‘(𝑖𝑀𝑗))‘𝑥))
2624, 25sylanbr 574 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑀 decompPMat 𝑥)𝑗) = ((coe1‘(𝑖𝑀𝑗))‘𝑥))
2716adantr 473 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
2827adantr 473 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
2912, 9mat0op 20732 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑎𝑁, 𝑏𝑁 ↦ (0g𝑅)))
3018, 29syl5eq 2826 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 = (𝑎𝑁, 𝑏𝑁 ↦ (0g𝑅)))
3128, 30syl 17 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 0 = (𝑎𝑁, 𝑏𝑁 ↦ (0g𝑅)))
32 eqidd 2779 . . . . . . . . 9 (((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 = 𝑖𝑏 = 𝑗)) → (0g𝑅) = (0g𝑅))
33 simpl 475 . . . . . . . . . 10 ((𝑖𝑁𝑗𝑁) → 𝑖𝑁)
3433adantl 474 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
35 simpr 477 . . . . . . . . . 10 ((𝑖𝑁𝑗𝑁) → 𝑗𝑁)
3635adantl 474 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
37 fvexd 6514 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (0g𝑅) ∈ V)
3831, 32, 34, 36, 37ovmpod 7118 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖 0 𝑗) = (0g𝑅))
3926, 38eqeq12d 2793 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑖(𝑀 decompPMat 𝑥)𝑗) = (𝑖 0 𝑗) ↔ ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)))
40392ralbidva 3148 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → (∀𝑖𝑁𝑗𝑁 (𝑖(𝑀 decompPMat 𝑥)𝑗) = (𝑖 0 𝑗) ↔ ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)))
4123, 40bitrd 271 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑀 decompPMat 𝑥) = 0 ↔ ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅)))
4241imbi2d 333 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → (𝑀 decompPMat 𝑥) = 0 ) ↔ (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅))))
4342ralbidva 3146 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝑀 decompPMat 𝑥) = 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅))))
4443rexbidv 3242 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝑀 decompPMat 𝑥) = 0 ) ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = (0g𝑅))))
4511, 44mpbird 249 1 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝑀 decompPMat 𝑥) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wral 3088  wrex 3089  Vcvv 3415   class class class wbr 4929  cfv 6188  (class class class)co 6976  cmpo 6978  Fincfn 8306   < clt 10474  0cn0 11707  Basecbs 16339  0gc0g 16569  Ringcrg 19020  Poly1cpl1 20048  coe1cco1 20049   Mat cmat 20720   decompPMat cdecpmat 21074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-ot 4450  df-uni 4713  df-int 4750  df-iun 4794  df-iin 4795  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-se 5367  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-isom 6197  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-of 7227  df-om 7397  df-1st 7501  df-2nd 7502  df-supp 7634  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-oadd 7909  df-er 8089  df-map 8208  df-ixp 8260  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-fsupp 8629  df-sup 8701  df-oi 8769  df-card 9162  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-nn 11440  df-2 11503  df-3 11504  df-4 11505  df-5 11506  df-6 11507  df-7 11508  df-8 11509  df-9 11510  df-n0 11708  df-z 11794  df-dec 11912  df-uz 12059  df-fz 12709  df-fzo 12850  df-seq 13185  df-hash 13506  df-struct 16341  df-ndx 16342  df-slot 16343  df-base 16345  df-sets 16346  df-ress 16347  df-plusg 16434  df-mulr 16435  df-sca 16437  df-vsca 16438  df-ip 16439  df-tset 16440  df-ple 16441  df-ds 16443  df-hom 16445  df-cco 16446  df-0g 16571  df-gsum 16572  df-prds 16577  df-pws 16579  df-mre 16715  df-mrc 16716  df-acs 16718  df-mgm 17710  df-sgrp 17752  df-mnd 17763  df-mhm 17803  df-submnd 17804  df-grp 17894  df-minusg 17895  df-sbg 17896  df-mulg 18012  df-subg 18060  df-ghm 18127  df-cntz 18218  df-cmn 18668  df-abl 18669  df-mgp 18963  df-ur 18975  df-ring 19022  df-subrg 19256  df-lmod 19358  df-lss 19426  df-sra 19666  df-rgmod 19667  df-psr 19850  df-mpl 19852  df-opsr 19854  df-psr1 20051  df-ply1 20053  df-coe1 20054  df-dsmm 20578  df-frlm 20593  df-mamu 20697  df-mat 20721  df-decpmat 21075
This theorem is referenced by:  decpmatfsupp  21081  pmatcollpwfi  21094
  Copyright terms: Public domain W3C validator