Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > expgt0 | Structured version Visualization version GIF version |
Description: A positive real raised to an integer power is positive. (Contributed by NM, 16-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
expgt0 | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 < 𝐴) → 0 < (𝐴↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrp 12636 | . . . 4 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
2 | rpexpcl 13704 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℝ+) | |
3 | 2 | rpgt0d 12679 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → 0 < (𝐴↑𝑁)) |
4 | 1, 3 | sylanbr 585 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ 𝑁 ∈ ℤ) → 0 < (𝐴↑𝑁)) |
5 | 4 | 3impa 1112 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝑁 ∈ ℤ) → 0 < (𝐴↑𝑁)) |
6 | 5 | 3com23 1128 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ 0 < 𝐴) → 0 < (𝐴↑𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 ∈ wcel 2112 class class class wbr 5070 (class class class)co 7252 ℝcr 10776 0cc0 10777 < clt 10915 ℤcz 12224 ℝ+crp 12634 ↑cexp 13685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 ax-pre-mulgt0 10854 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-2nd 7802 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-er 8433 df-en 8669 df-dom 8670 df-sdom 8671 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-sub 11112 df-neg 11113 df-div 11538 df-nn 11879 df-n0 12139 df-z 12225 df-uz 12487 df-rp 12635 df-seq 13625 df-exp 13686 |
This theorem is referenced by: expnlbnd 13851 expmulnbnd 13853 expnngt1 13859 geomulcvg 15491 sin01gt0 15802 cos01gt0 15803 radcnvlem1 25452 ftalem1 26102 padicabv 26658 ostth2lem3 26663 ostth3 26666 omssubadd 32142 hgt750lemd 32503 hgt750lem 32506 knoppndvlem14 34607 knoppndvlem19 34612 knoppndvlem21 34614 3lexlogpow5ineq1 39969 aks4d1p1p2 39984 aks4d1p1p4 39985 aks4d1p1p6 39987 aks4d1p1p5 39989 oexpreposd 40214 stoweidlem1 43405 expnegico01 45720 fldivexpfllog2 45772 fllog2 45775 dignnld 45810 |
Copyright terms: Public domain | W3C validator |