MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rplpwr Structured version   Visualization version   GIF version

Theorem rplpwr 16466
Description: If 𝐴 and 𝐵 are relatively prime, then so are 𝐴𝑁 and 𝐵. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
rplpwr ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd 𝐵) = 1))

Proof of Theorem rplpwr
Dummy variables 𝑛 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7354 . . . . . . . 8 (𝑘 = 1 → (𝐴𝑘) = (𝐴↑1))
21oveq1d 7361 . . . . . . 7 (𝑘 = 1 → ((𝐴𝑘) gcd 𝐵) = ((𝐴↑1) gcd 𝐵))
32eqeq1d 2733 . . . . . 6 (𝑘 = 1 → (((𝐴𝑘) gcd 𝐵) = 1 ↔ ((𝐴↑1) gcd 𝐵) = 1))
43imbi2d 340 . . . . 5 (𝑘 = 1 → ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑘) gcd 𝐵) = 1) ↔ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑1) gcd 𝐵) = 1)))
5 oveq2 7354 . . . . . . . 8 (𝑘 = 𝑛 → (𝐴𝑘) = (𝐴𝑛))
65oveq1d 7361 . . . . . . 7 (𝑘 = 𝑛 → ((𝐴𝑘) gcd 𝐵) = ((𝐴𝑛) gcd 𝐵))
76eqeq1d 2733 . . . . . 6 (𝑘 = 𝑛 → (((𝐴𝑘) gcd 𝐵) = 1 ↔ ((𝐴𝑛) gcd 𝐵) = 1))
87imbi2d 340 . . . . 5 (𝑘 = 𝑛 → ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑘) gcd 𝐵) = 1) ↔ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑛) gcd 𝐵) = 1)))
9 oveq2 7354 . . . . . . . 8 (𝑘 = (𝑛 + 1) → (𝐴𝑘) = (𝐴↑(𝑛 + 1)))
109oveq1d 7361 . . . . . . 7 (𝑘 = (𝑛 + 1) → ((𝐴𝑘) gcd 𝐵) = ((𝐴↑(𝑛 + 1)) gcd 𝐵))
1110eqeq1d 2733 . . . . . 6 (𝑘 = (𝑛 + 1) → (((𝐴𝑘) gcd 𝐵) = 1 ↔ ((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1))
1211imbi2d 340 . . . . 5 (𝑘 = (𝑛 + 1) → ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑘) gcd 𝐵) = 1) ↔ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1)))
13 oveq2 7354 . . . . . . . 8 (𝑘 = 𝑁 → (𝐴𝑘) = (𝐴𝑁))
1413oveq1d 7361 . . . . . . 7 (𝑘 = 𝑁 → ((𝐴𝑘) gcd 𝐵) = ((𝐴𝑁) gcd 𝐵))
1514eqeq1d 2733 . . . . . 6 (𝑘 = 𝑁 → (((𝐴𝑘) gcd 𝐵) = 1 ↔ ((𝐴𝑁) gcd 𝐵) = 1))
1615imbi2d 340 . . . . 5 (𝑘 = 𝑁 → ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑘) gcd 𝐵) = 1) ↔ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑁) gcd 𝐵) = 1)))
17 nncn 12130 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
1817exp1d 14045 . . . . . . . . 9 (𝐴 ∈ ℕ → (𝐴↑1) = 𝐴)
1918oveq1d 7361 . . . . . . . 8 (𝐴 ∈ ℕ → ((𝐴↑1) gcd 𝐵) = (𝐴 gcd 𝐵))
2019adantr 480 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴↑1) gcd 𝐵) = (𝐴 gcd 𝐵))
2120eqeq1d 2733 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (((𝐴↑1) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1))
2221biimpar 477 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑1) gcd 𝐵) = 1)
23 df-3an 1088 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ↔ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑛 ∈ ℕ))
24 simpl1 1192 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 ∈ ℕ)
2524nncnd 12138 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 ∈ ℂ)
26 simpl3 1194 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝑛 ∈ ℕ)
2726nnnn0d 12439 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝑛 ∈ ℕ0)
2825, 27expp1d 14051 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴↑(𝑛 + 1)) = ((𝐴𝑛) · 𝐴))
29 simp1 1136 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℕ)
30 nnnn0 12385 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
31303ad2ant3 1135 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
3229, 31nnexpcld 14149 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝐴𝑛) ∈ ℕ)
3332nnzd 12492 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝐴𝑛) ∈ ℤ)
3433adantr 480 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴𝑛) ∈ ℤ)
3534zcnd 12575 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴𝑛) ∈ ℂ)
3635, 25mulcomd 11130 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑛) · 𝐴) = (𝐴 · (𝐴𝑛)))
3728, 36eqtrd 2766 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴↑(𝑛 + 1)) = (𝐴 · (𝐴𝑛)))
3837oveq2d 7362 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐵 gcd (𝐴↑(𝑛 + 1))) = (𝐵 gcd (𝐴 · (𝐴𝑛))))
39 simpl2 1193 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝐵 ∈ ℕ)
4032adantr 480 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴𝑛) ∈ ℕ)
41 nnz 12486 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
42413ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℤ)
43 nnz 12486 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
44433ad2ant2 1134 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℤ)
4542, 44gcdcomd 16422 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
4645eqeq1d 2733 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 ↔ (𝐵 gcd 𝐴) = 1))
4746biimpa 476 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐵 gcd 𝐴) = 1)
48 rpmulgcd 16465 . . . . . . . . . . . . . 14 (((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ (𝐴𝑛) ∈ ℕ) ∧ (𝐵 gcd 𝐴) = 1) → (𝐵 gcd (𝐴 · (𝐴𝑛))) = (𝐵 gcd (𝐴𝑛)))
4939, 24, 40, 47, 48syl31anc 1375 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐵 gcd (𝐴 · (𝐴𝑛))) = (𝐵 gcd (𝐴𝑛)))
5038, 49eqtrd 2766 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐵 gcd (𝐴↑(𝑛 + 1))) = (𝐵 gcd (𝐴𝑛)))
51 peano2nn 12134 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
52513ad2ant3 1135 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
5352adantr 480 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝑛 + 1) ∈ ℕ)
5453nnnn0d 12439 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝑛 + 1) ∈ ℕ0)
5524, 54nnexpcld 14149 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴↑(𝑛 + 1)) ∈ ℕ)
5655nnzd 12492 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴↑(𝑛 + 1)) ∈ ℤ)
5744adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → 𝐵 ∈ ℤ)
5856, 57gcdcomd 16422 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = (𝐵 gcd (𝐴↑(𝑛 + 1))))
5934, 57gcdcomd 16422 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑛) gcd 𝐵) = (𝐵 gcd (𝐴𝑛)))
6050, 58, 593eqtr4d 2776 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = ((𝐴𝑛) gcd 𝐵))
6160eqeq1d 2733 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1 ↔ ((𝐴𝑛) gcd 𝐵) = 1))
6261biimprd 248 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (((𝐴𝑛) gcd 𝐵) = 1 → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1))
6323, 62sylanbr 582 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (((𝐴𝑛) gcd 𝐵) = 1 → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1))
6463an32s 652 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑛 ∈ ℕ) → (((𝐴𝑛) gcd 𝐵) = 1 → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1))
6564expcom 413 . . . . . 6 (𝑛 ∈ ℕ → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (((𝐴𝑛) gcd 𝐵) = 1 → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1)))
6665a2d 29 . . . . 5 (𝑛 ∈ ℕ → ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑛) gcd 𝐵) = 1) → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴↑(𝑛 + 1)) gcd 𝐵) = 1)))
674, 8, 12, 16, 22, 66nnind 12140 . . . 4 (𝑁 ∈ ℕ → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑁) gcd 𝐵) = 1))
6867expd 415 . . 3 (𝑁 ∈ ℕ → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd 𝐵) = 1)))
6968com12 32 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd 𝐵) = 1)))
70693impia 1117 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd 𝐵) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  (class class class)co 7346  1c1 11004   + caddc 11006   · cmul 11008  cn 12122  0cn0 12378  cz 12465  cexp 13965   gcd cgcd 16402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-fl 13693  df-mod 13771  df-seq 13906  df-exp 13966  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-dvds 16161  df-gcd 16403
This theorem is referenced by:  rprpwr  16467  rppwr  16468  logbgcd1irr  26729  lgsne0  27271  2sqlem8  27362  flt4lem5a  42684  flt4lem5b  42685  flt4lem5c  42686  flt4lem5d  42687  flt4lem5e  42688
  Copyright terms: Public domain W3C validator