![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gexcl3 | Structured version Visualization version GIF version |
Description: If the order of every group element is bounded by 𝑁, the group has finite exponent. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
gexod.1 | ⊢ 𝑋 = (Base‘𝐺) |
gexod.2 | ⊢ 𝐸 = (gEx‘𝐺) |
gexod.3 | ⊢ 𝑂 = (od‘𝐺) |
Ref | Expression |
---|---|
gexcl3 | ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → 𝐸 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → 𝐺 ∈ Grp) | |
2 | gexod.1 | . . . . . . . 8 ⊢ 𝑋 = (Base‘𝐺) | |
3 | 2 | grpbn0 18928 | . . . . . . 7 ⊢ (𝐺 ∈ Grp → 𝑋 ≠ ∅) |
4 | r19.2z 4496 | . . . . . . 7 ⊢ ((𝑋 ≠ ∅ ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → ∃𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) | |
5 | 3, 4 | sylan 578 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → ∃𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) |
6 | elfzuz2 13544 | . . . . . . . 8 ⊢ ((𝑂‘𝑥) ∈ (1...𝑁) → 𝑁 ∈ (ℤ≥‘1)) | |
7 | nnuz 12901 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
8 | 6, 7 | eleqtrrdi 2839 | . . . . . . 7 ⊢ ((𝑂‘𝑥) ∈ (1...𝑁) → 𝑁 ∈ ℕ) |
9 | 8 | rexlimivw 3147 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁) → 𝑁 ∈ ℕ) |
10 | 5, 9 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ) |
11 | 10 | nnnn0d 12568 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ0) |
12 | 11 | faccld 14281 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → (!‘𝑁) ∈ ℕ) |
13 | elfzuzb 13533 | . . . . . . . . 9 ⊢ ((𝑂‘𝑥) ∈ (1...𝑁) ↔ ((𝑂‘𝑥) ∈ (ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘(𝑂‘𝑥)))) | |
14 | elnnuz 12902 | . . . . . . . . . 10 ⊢ ((𝑂‘𝑥) ∈ ℕ ↔ (𝑂‘𝑥) ∈ (ℤ≥‘1)) | |
15 | dvdsfac 16308 | . . . . . . . . . 10 ⊢ (((𝑂‘𝑥) ∈ ℕ ∧ 𝑁 ∈ (ℤ≥‘(𝑂‘𝑥))) → (𝑂‘𝑥) ∥ (!‘𝑁)) | |
16 | 14, 15 | sylanbr 580 | . . . . . . . . 9 ⊢ (((𝑂‘𝑥) ∈ (ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘(𝑂‘𝑥))) → (𝑂‘𝑥) ∥ (!‘𝑁)) |
17 | 13, 16 | sylbi 216 | . . . . . . . 8 ⊢ ((𝑂‘𝑥) ∈ (1...𝑁) → (𝑂‘𝑥) ∥ (!‘𝑁)) |
18 | 17 | adantl 480 | . . . . . . 7 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → (𝑂‘𝑥) ∥ (!‘𝑁)) |
19 | simpll 765 | . . . . . . . 8 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → 𝐺 ∈ Grp) | |
20 | simplr 767 | . . . . . . . 8 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → 𝑥 ∈ 𝑋) | |
21 | 8 | adantl 480 | . . . . . . . . . . 11 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ) |
22 | 21 | nnnn0d 12568 | . . . . . . . . . 10 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ0) |
23 | 22 | faccld 14281 | . . . . . . . . 9 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → (!‘𝑁) ∈ ℕ) |
24 | 23 | nnzd 12621 | . . . . . . . 8 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → (!‘𝑁) ∈ ℤ) |
25 | gexod.3 | . . . . . . . . 9 ⊢ 𝑂 = (od‘𝐺) | |
26 | eqid 2727 | . . . . . . . . 9 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
27 | eqid 2727 | . . . . . . . . 9 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
28 | 2, 25, 26, 27 | oddvds 19507 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ (!‘𝑁) ∈ ℤ) → ((𝑂‘𝑥) ∥ (!‘𝑁) ↔ ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺))) |
29 | 19, 20, 24, 28 | syl3anc 1368 | . . . . . . 7 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → ((𝑂‘𝑥) ∥ (!‘𝑁) ↔ ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺))) |
30 | 18, 29 | mpbid 231 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺)) |
31 | 30 | ex 411 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((𝑂‘𝑥) ∈ (1...𝑁) → ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺))) |
32 | 31 | ralimdva 3163 | . . . 4 ⊢ (𝐺 ∈ Grp → (∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁) → ∀𝑥 ∈ 𝑋 ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺))) |
33 | 32 | imp 405 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → ∀𝑥 ∈ 𝑋 ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺)) |
34 | gexod.2 | . . . 4 ⊢ 𝐸 = (gEx‘𝐺) | |
35 | 2, 34, 26, 27 | gexlem2 19542 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (!‘𝑁) ∈ ℕ ∧ ∀𝑥 ∈ 𝑋 ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺)) → 𝐸 ∈ (1...(!‘𝑁))) |
36 | 1, 12, 33, 35 | syl3anc 1368 | . 2 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → 𝐸 ∈ (1...(!‘𝑁))) |
37 | elfznn 13568 | . 2 ⊢ (𝐸 ∈ (1...(!‘𝑁)) → 𝐸 ∈ ℕ) | |
38 | 36, 37 | syl 17 | 1 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → 𝐸 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2936 ∀wral 3057 ∃wrex 3066 ∅c0 4324 class class class wbr 5150 ‘cfv 6551 (class class class)co 7424 1c1 11145 ℕcn 12248 ℤcz 12594 ℤ≥cuz 12858 ...cfz 13522 !cfa 14270 ∥ cdvds 16236 Basecbs 17185 0gc0g 17426 Grpcgrp 18895 .gcmg 19028 odcod 19484 gExcgex 19485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 ax-pre-sup 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-sup 9471 df-inf 9472 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-div 11908 df-nn 12249 df-2 12311 df-3 12312 df-n0 12509 df-z 12595 df-uz 12859 df-rp 13013 df-fz 13523 df-fl 13795 df-mod 13873 df-seq 14005 df-exp 14065 df-fac 14271 df-cj 15084 df-re 15085 df-im 15086 df-sqrt 15220 df-abs 15221 df-dvds 16237 df-0g 17428 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-grp 18898 df-minusg 18899 df-sbg 18900 df-mulg 19029 df-od 19488 df-gex 19489 |
This theorem is referenced by: gexcl2 19549 |
Copyright terms: Public domain | W3C validator |