MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexcl3 Structured version   Visualization version   GIF version

Theorem gexcl3 19503
Description: If the order of every group element is bounded by 𝑁, the group has finite exponent. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexod.1 𝑋 = (Base‘𝐺)
gexod.2 𝐸 = (gEx‘𝐺)
gexod.3 𝑂 = (od‘𝐺)
Assertion
Ref Expression
gexcl3 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁)) → 𝐸 ∈ ℕ)
Distinct variable groups:   𝑥,𝐸   𝑥,𝐺   𝑥,𝑁   𝑥,𝑋
Allowed substitution hint:   𝑂(𝑥)

Proof of Theorem gexcl3
StepHypRef Expression
1 simpl 482 . . 3 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁)) → 𝐺 ∈ Grp)
2 gexod.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
32grpbn0 18883 . . . . . . 7 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
4 r19.2z 4449 . . . . . . 7 ((𝑋 ≠ ∅ ∧ ∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁)) → ∃𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁))
53, 4sylan 580 . . . . . 6 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁)) → ∃𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁))
6 elfzuz2 13433 . . . . . . . 8 ((𝑂𝑥) ∈ (1...𝑁) → 𝑁 ∈ (ℤ‘1))
7 nnuz 12779 . . . . . . . 8 ℕ = (ℤ‘1)
86, 7eleqtrrdi 2844 . . . . . . 7 ((𝑂𝑥) ∈ (1...𝑁) → 𝑁 ∈ ℕ)
98rexlimivw 3130 . . . . . 6 (∃𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁) → 𝑁 ∈ ℕ)
105, 9syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ)
1110nnnn0d 12451 . . . 4 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ0)
1211faccld 14195 . . 3 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁)) → (!‘𝑁) ∈ ℕ)
13 elfzuzb 13422 . . . . . . . . 9 ((𝑂𝑥) ∈ (1...𝑁) ↔ ((𝑂𝑥) ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ‘(𝑂𝑥))))
14 elnnuz 12780 . . . . . . . . . 10 ((𝑂𝑥) ∈ ℕ ↔ (𝑂𝑥) ∈ (ℤ‘1))
15 dvdsfac 16241 . . . . . . . . . 10 (((𝑂𝑥) ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑂𝑥))) → (𝑂𝑥) ∥ (!‘𝑁))
1614, 15sylanbr 582 . . . . . . . . 9 (((𝑂𝑥) ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ‘(𝑂𝑥))) → (𝑂𝑥) ∥ (!‘𝑁))
1713, 16sylbi 217 . . . . . . . 8 ((𝑂𝑥) ∈ (1...𝑁) → (𝑂𝑥) ∥ (!‘𝑁))
1817adantl 481 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑥𝑋) ∧ (𝑂𝑥) ∈ (1...𝑁)) → (𝑂𝑥) ∥ (!‘𝑁))
19 simpll 766 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑥𝑋) ∧ (𝑂𝑥) ∈ (1...𝑁)) → 𝐺 ∈ Grp)
20 simplr 768 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑥𝑋) ∧ (𝑂𝑥) ∈ (1...𝑁)) → 𝑥𝑋)
218adantl 481 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑥𝑋) ∧ (𝑂𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ)
2221nnnn0d 12451 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑥𝑋) ∧ (𝑂𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ0)
2322faccld 14195 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑥𝑋) ∧ (𝑂𝑥) ∈ (1...𝑁)) → (!‘𝑁) ∈ ℕ)
2423nnzd 12503 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑥𝑋) ∧ (𝑂𝑥) ∈ (1...𝑁)) → (!‘𝑁) ∈ ℤ)
25 gexod.3 . . . . . . . . 9 𝑂 = (od‘𝐺)
26 eqid 2733 . . . . . . . . 9 (.g𝐺) = (.g𝐺)
27 eqid 2733 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
282, 25, 26, 27oddvds 19463 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝑋 ∧ (!‘𝑁) ∈ ℤ) → ((𝑂𝑥) ∥ (!‘𝑁) ↔ ((!‘𝑁)(.g𝐺)𝑥) = (0g𝐺)))
2919, 20, 24, 28syl3anc 1373 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑥𝑋) ∧ (𝑂𝑥) ∈ (1...𝑁)) → ((𝑂𝑥) ∥ (!‘𝑁) ↔ ((!‘𝑁)(.g𝐺)𝑥) = (0g𝐺)))
3018, 29mpbid 232 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑥𝑋) ∧ (𝑂𝑥) ∈ (1...𝑁)) → ((!‘𝑁)(.g𝐺)𝑥) = (0g𝐺))
3130ex 412 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((𝑂𝑥) ∈ (1...𝑁) → ((!‘𝑁)(.g𝐺)𝑥) = (0g𝐺)))
3231ralimdva 3145 . . . 4 (𝐺 ∈ Grp → (∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁) → ∀𝑥𝑋 ((!‘𝑁)(.g𝐺)𝑥) = (0g𝐺)))
3332imp 406 . . 3 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁)) → ∀𝑥𝑋 ((!‘𝑁)(.g𝐺)𝑥) = (0g𝐺))
34 gexod.2 . . . 4 𝐸 = (gEx‘𝐺)
352, 34, 26, 27gexlem2 19498 . . 3 ((𝐺 ∈ Grp ∧ (!‘𝑁) ∈ ℕ ∧ ∀𝑥𝑋 ((!‘𝑁)(.g𝐺)𝑥) = (0g𝐺)) → 𝐸 ∈ (1...(!‘𝑁)))
361, 12, 33, 35syl3anc 1373 . 2 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁)) → 𝐸 ∈ (1...(!‘𝑁)))
37 elfznn 13457 . 2 (𝐸 ∈ (1...(!‘𝑁)) → 𝐸 ∈ ℕ)
3836, 37syl 17 1 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁)) → 𝐸 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  c0 4282   class class class wbr 5095  cfv 6488  (class class class)co 7354  1c1 11016  cn 12134  cz 12477  cuz 12740  ...cfz 13411  !cfa 14184  cdvds 16167  Basecbs 17124  0gc0g 17347  Grpcgrp 18850  .gcmg 18984  odcod 19440  gExcgex 19441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-sup 9335  df-inf 9336  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-n0 12391  df-z 12478  df-uz 12741  df-rp 12895  df-fz 13412  df-fl 13700  df-mod 13778  df-seq 13913  df-exp 13973  df-fac 14185  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-dvds 16168  df-0g 17349  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-grp 18853  df-minusg 18854  df-sbg 18855  df-mulg 18985  df-od 19444  df-gex 19445
This theorem is referenced by:  gexcl2  19505
  Copyright terms: Public domain W3C validator