| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gexcl3 | Structured version Visualization version GIF version | ||
| Description: If the order of every group element is bounded by 𝑁, the group has finite exponent. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| Ref | Expression |
|---|---|
| gexod.1 | ⊢ 𝑋 = (Base‘𝐺) |
| gexod.2 | ⊢ 𝐸 = (gEx‘𝐺) |
| gexod.3 | ⊢ 𝑂 = (od‘𝐺) |
| Ref | Expression |
|---|---|
| gexcl3 | ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → 𝐸 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → 𝐺 ∈ Grp) | |
| 2 | gexod.1 | . . . . . . . 8 ⊢ 𝑋 = (Base‘𝐺) | |
| 3 | 2 | grpbn0 18879 | . . . . . . 7 ⊢ (𝐺 ∈ Grp → 𝑋 ≠ ∅) |
| 4 | r19.2z 4445 | . . . . . . 7 ⊢ ((𝑋 ≠ ∅ ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → ∃𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) | |
| 5 | 3, 4 | sylan 580 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → ∃𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) |
| 6 | elfzuz2 13429 | . . . . . . . 8 ⊢ ((𝑂‘𝑥) ∈ (1...𝑁) → 𝑁 ∈ (ℤ≥‘1)) | |
| 7 | nnuz 12775 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
| 8 | 6, 7 | eleqtrrdi 2842 | . . . . . . 7 ⊢ ((𝑂‘𝑥) ∈ (1...𝑁) → 𝑁 ∈ ℕ) |
| 9 | 8 | rexlimivw 3129 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁) → 𝑁 ∈ ℕ) |
| 10 | 5, 9 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ) |
| 11 | 10 | nnnn0d 12442 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ0) |
| 12 | 11 | faccld 14191 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → (!‘𝑁) ∈ ℕ) |
| 13 | elfzuzb 13418 | . . . . . . . . 9 ⊢ ((𝑂‘𝑥) ∈ (1...𝑁) ↔ ((𝑂‘𝑥) ∈ (ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘(𝑂‘𝑥)))) | |
| 14 | elnnuz 12776 | . . . . . . . . . 10 ⊢ ((𝑂‘𝑥) ∈ ℕ ↔ (𝑂‘𝑥) ∈ (ℤ≥‘1)) | |
| 15 | dvdsfac 16237 | . . . . . . . . . 10 ⊢ (((𝑂‘𝑥) ∈ ℕ ∧ 𝑁 ∈ (ℤ≥‘(𝑂‘𝑥))) → (𝑂‘𝑥) ∥ (!‘𝑁)) | |
| 16 | 14, 15 | sylanbr 582 | . . . . . . . . 9 ⊢ (((𝑂‘𝑥) ∈ (ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘(𝑂‘𝑥))) → (𝑂‘𝑥) ∥ (!‘𝑁)) |
| 17 | 13, 16 | sylbi 217 | . . . . . . . 8 ⊢ ((𝑂‘𝑥) ∈ (1...𝑁) → (𝑂‘𝑥) ∥ (!‘𝑁)) |
| 18 | 17 | adantl 481 | . . . . . . 7 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → (𝑂‘𝑥) ∥ (!‘𝑁)) |
| 19 | simpll 766 | . . . . . . . 8 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → 𝐺 ∈ Grp) | |
| 20 | simplr 768 | . . . . . . . 8 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → 𝑥 ∈ 𝑋) | |
| 21 | 8 | adantl 481 | . . . . . . . . . . 11 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ) |
| 22 | 21 | nnnn0d 12442 | . . . . . . . . . 10 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ0) |
| 23 | 22 | faccld 14191 | . . . . . . . . 9 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → (!‘𝑁) ∈ ℕ) |
| 24 | 23 | nnzd 12495 | . . . . . . . 8 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → (!‘𝑁) ∈ ℤ) |
| 25 | gexod.3 | . . . . . . . . 9 ⊢ 𝑂 = (od‘𝐺) | |
| 26 | eqid 2731 | . . . . . . . . 9 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 27 | eqid 2731 | . . . . . . . . 9 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 28 | 2, 25, 26, 27 | oddvds 19460 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ (!‘𝑁) ∈ ℤ) → ((𝑂‘𝑥) ∥ (!‘𝑁) ↔ ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺))) |
| 29 | 19, 20, 24, 28 | syl3anc 1373 | . . . . . . 7 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → ((𝑂‘𝑥) ∥ (!‘𝑁) ↔ ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺))) |
| 30 | 18, 29 | mpbid 232 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺)) |
| 31 | 30 | ex 412 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((𝑂‘𝑥) ∈ (1...𝑁) → ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺))) |
| 32 | 31 | ralimdva 3144 | . . . 4 ⊢ (𝐺 ∈ Grp → (∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁) → ∀𝑥 ∈ 𝑋 ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺))) |
| 33 | 32 | imp 406 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → ∀𝑥 ∈ 𝑋 ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺)) |
| 34 | gexod.2 | . . . 4 ⊢ 𝐸 = (gEx‘𝐺) | |
| 35 | 2, 34, 26, 27 | gexlem2 19495 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (!‘𝑁) ∈ ℕ ∧ ∀𝑥 ∈ 𝑋 ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺)) → 𝐸 ∈ (1...(!‘𝑁))) |
| 36 | 1, 12, 33, 35 | syl3anc 1373 | . 2 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → 𝐸 ∈ (1...(!‘𝑁))) |
| 37 | elfznn 13453 | . 2 ⊢ (𝐸 ∈ (1...(!‘𝑁)) → 𝐸 ∈ ℕ) | |
| 38 | 36, 37 | syl 17 | 1 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → 𝐸 ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 ∅c0 4283 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 1c1 11007 ℕcn 12125 ℤcz 12468 ℤ≥cuz 12732 ...cfz 13407 !cfa 14180 ∥ cdvds 16163 Basecbs 17120 0gc0g 17343 Grpcgrp 18846 .gcmg 18980 odcod 19437 gExcgex 19438 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-od 19441 df-gex 19442 |
| This theorem is referenced by: gexcl2 19502 |
| Copyright terms: Public domain | W3C validator |