| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gexcl3 | Structured version Visualization version GIF version | ||
| Description: If the order of every group element is bounded by 𝑁, the group has finite exponent. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| Ref | Expression |
|---|---|
| gexod.1 | ⊢ 𝑋 = (Base‘𝐺) |
| gexod.2 | ⊢ 𝐸 = (gEx‘𝐺) |
| gexod.3 | ⊢ 𝑂 = (od‘𝐺) |
| Ref | Expression |
|---|---|
| gexcl3 | ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → 𝐸 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → 𝐺 ∈ Grp) | |
| 2 | gexod.1 | . . . . . . . 8 ⊢ 𝑋 = (Base‘𝐺) | |
| 3 | 2 | grpbn0 18883 | . . . . . . 7 ⊢ (𝐺 ∈ Grp → 𝑋 ≠ ∅) |
| 4 | r19.2z 4449 | . . . . . . 7 ⊢ ((𝑋 ≠ ∅ ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → ∃𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) | |
| 5 | 3, 4 | sylan 580 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → ∃𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) |
| 6 | elfzuz2 13433 | . . . . . . . 8 ⊢ ((𝑂‘𝑥) ∈ (1...𝑁) → 𝑁 ∈ (ℤ≥‘1)) | |
| 7 | nnuz 12779 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
| 8 | 6, 7 | eleqtrrdi 2844 | . . . . . . 7 ⊢ ((𝑂‘𝑥) ∈ (1...𝑁) → 𝑁 ∈ ℕ) |
| 9 | 8 | rexlimivw 3130 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁) → 𝑁 ∈ ℕ) |
| 10 | 5, 9 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ) |
| 11 | 10 | nnnn0d 12451 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ0) |
| 12 | 11 | faccld 14195 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → (!‘𝑁) ∈ ℕ) |
| 13 | elfzuzb 13422 | . . . . . . . . 9 ⊢ ((𝑂‘𝑥) ∈ (1...𝑁) ↔ ((𝑂‘𝑥) ∈ (ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘(𝑂‘𝑥)))) | |
| 14 | elnnuz 12780 | . . . . . . . . . 10 ⊢ ((𝑂‘𝑥) ∈ ℕ ↔ (𝑂‘𝑥) ∈ (ℤ≥‘1)) | |
| 15 | dvdsfac 16241 | . . . . . . . . . 10 ⊢ (((𝑂‘𝑥) ∈ ℕ ∧ 𝑁 ∈ (ℤ≥‘(𝑂‘𝑥))) → (𝑂‘𝑥) ∥ (!‘𝑁)) | |
| 16 | 14, 15 | sylanbr 582 | . . . . . . . . 9 ⊢ (((𝑂‘𝑥) ∈ (ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘(𝑂‘𝑥))) → (𝑂‘𝑥) ∥ (!‘𝑁)) |
| 17 | 13, 16 | sylbi 217 | . . . . . . . 8 ⊢ ((𝑂‘𝑥) ∈ (1...𝑁) → (𝑂‘𝑥) ∥ (!‘𝑁)) |
| 18 | 17 | adantl 481 | . . . . . . 7 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → (𝑂‘𝑥) ∥ (!‘𝑁)) |
| 19 | simpll 766 | . . . . . . . 8 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → 𝐺 ∈ Grp) | |
| 20 | simplr 768 | . . . . . . . 8 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → 𝑥 ∈ 𝑋) | |
| 21 | 8 | adantl 481 | . . . . . . . . . . 11 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ) |
| 22 | 21 | nnnn0d 12451 | . . . . . . . . . 10 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ0) |
| 23 | 22 | faccld 14195 | . . . . . . . . 9 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → (!‘𝑁) ∈ ℕ) |
| 24 | 23 | nnzd 12503 | . . . . . . . 8 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → (!‘𝑁) ∈ ℤ) |
| 25 | gexod.3 | . . . . . . . . 9 ⊢ 𝑂 = (od‘𝐺) | |
| 26 | eqid 2733 | . . . . . . . . 9 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 27 | eqid 2733 | . . . . . . . . 9 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 28 | 2, 25, 26, 27 | oddvds 19463 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ (!‘𝑁) ∈ ℤ) → ((𝑂‘𝑥) ∥ (!‘𝑁) ↔ ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺))) |
| 29 | 19, 20, 24, 28 | syl3anc 1373 | . . . . . . 7 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → ((𝑂‘𝑥) ∥ (!‘𝑁) ↔ ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺))) |
| 30 | 18, 29 | mpbid 232 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺)) |
| 31 | 30 | ex 412 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((𝑂‘𝑥) ∈ (1...𝑁) → ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺))) |
| 32 | 31 | ralimdva 3145 | . . . 4 ⊢ (𝐺 ∈ Grp → (∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁) → ∀𝑥 ∈ 𝑋 ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺))) |
| 33 | 32 | imp 406 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → ∀𝑥 ∈ 𝑋 ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺)) |
| 34 | gexod.2 | . . . 4 ⊢ 𝐸 = (gEx‘𝐺) | |
| 35 | 2, 34, 26, 27 | gexlem2 19498 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (!‘𝑁) ∈ ℕ ∧ ∀𝑥 ∈ 𝑋 ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺)) → 𝐸 ∈ (1...(!‘𝑁))) |
| 36 | 1, 12, 33, 35 | syl3anc 1373 | . 2 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → 𝐸 ∈ (1...(!‘𝑁))) |
| 37 | elfznn 13457 | . 2 ⊢ (𝐸 ∈ (1...(!‘𝑁)) → 𝐸 ∈ ℕ) | |
| 38 | 36, 37 | syl 17 | 1 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → 𝐸 ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ∃wrex 3057 ∅c0 4282 class class class wbr 5095 ‘cfv 6488 (class class class)co 7354 1c1 11016 ℕcn 12134 ℤcz 12477 ℤ≥cuz 12740 ...cfz 13411 !cfa 14184 ∥ cdvds 16167 Basecbs 17124 0gc0g 17347 Grpcgrp 18850 .gcmg 18984 odcod 19440 gExcgex 19441 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-sup 9335 df-inf 9336 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-z 12478 df-uz 12741 df-rp 12895 df-fz 13412 df-fl 13700 df-mod 13778 df-seq 13913 df-exp 13973 df-fac 14185 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-dvds 16168 df-0g 17349 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-grp 18853 df-minusg 18854 df-sbg 18855 df-mulg 18985 df-od 19444 df-gex 19445 |
| This theorem is referenced by: gexcl2 19505 |
| Copyright terms: Public domain | W3C validator |