![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gexcl3 | Structured version Visualization version GIF version |
Description: If the order of every group element is bounded by 𝑁, the group has finite exponent. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
gexod.1 | ⊢ 𝑋 = (Base‘𝐺) |
gexod.2 | ⊢ 𝐸 = (gEx‘𝐺) |
gexod.3 | ⊢ 𝑂 = (od‘𝐺) |
Ref | Expression |
---|---|
gexcl3 | ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → 𝐸 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → 𝐺 ∈ Grp) | |
2 | gexod.1 | . . . . . . . 8 ⊢ 𝑋 = (Base‘𝐺) | |
3 | 2 | grpbn0 19006 | . . . . . . 7 ⊢ (𝐺 ∈ Grp → 𝑋 ≠ ∅) |
4 | r19.2z 4518 | . . . . . . 7 ⊢ ((𝑋 ≠ ∅ ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → ∃𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) | |
5 | 3, 4 | sylan 579 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → ∃𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) |
6 | elfzuz2 13589 | . . . . . . . 8 ⊢ ((𝑂‘𝑥) ∈ (1...𝑁) → 𝑁 ∈ (ℤ≥‘1)) | |
7 | nnuz 12946 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
8 | 6, 7 | eleqtrrdi 2855 | . . . . . . 7 ⊢ ((𝑂‘𝑥) ∈ (1...𝑁) → 𝑁 ∈ ℕ) |
9 | 8 | rexlimivw 3157 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁) → 𝑁 ∈ ℕ) |
10 | 5, 9 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ) |
11 | 10 | nnnn0d 12613 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ0) |
12 | 11 | faccld 14333 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → (!‘𝑁) ∈ ℕ) |
13 | elfzuzb 13578 | . . . . . . . . 9 ⊢ ((𝑂‘𝑥) ∈ (1...𝑁) ↔ ((𝑂‘𝑥) ∈ (ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘(𝑂‘𝑥)))) | |
14 | elnnuz 12947 | . . . . . . . . . 10 ⊢ ((𝑂‘𝑥) ∈ ℕ ↔ (𝑂‘𝑥) ∈ (ℤ≥‘1)) | |
15 | dvdsfac 16374 | . . . . . . . . . 10 ⊢ (((𝑂‘𝑥) ∈ ℕ ∧ 𝑁 ∈ (ℤ≥‘(𝑂‘𝑥))) → (𝑂‘𝑥) ∥ (!‘𝑁)) | |
16 | 14, 15 | sylanbr 581 | . . . . . . . . 9 ⊢ (((𝑂‘𝑥) ∈ (ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘(𝑂‘𝑥))) → (𝑂‘𝑥) ∥ (!‘𝑁)) |
17 | 13, 16 | sylbi 217 | . . . . . . . 8 ⊢ ((𝑂‘𝑥) ∈ (1...𝑁) → (𝑂‘𝑥) ∥ (!‘𝑁)) |
18 | 17 | adantl 481 | . . . . . . 7 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → (𝑂‘𝑥) ∥ (!‘𝑁)) |
19 | simpll 766 | . . . . . . . 8 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → 𝐺 ∈ Grp) | |
20 | simplr 768 | . . . . . . . 8 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → 𝑥 ∈ 𝑋) | |
21 | 8 | adantl 481 | . . . . . . . . . . 11 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ) |
22 | 21 | nnnn0d 12613 | . . . . . . . . . 10 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ0) |
23 | 22 | faccld 14333 | . . . . . . . . 9 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → (!‘𝑁) ∈ ℕ) |
24 | 23 | nnzd 12666 | . . . . . . . 8 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → (!‘𝑁) ∈ ℤ) |
25 | gexod.3 | . . . . . . . . 9 ⊢ 𝑂 = (od‘𝐺) | |
26 | eqid 2740 | . . . . . . . . 9 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
27 | eqid 2740 | . . . . . . . . 9 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
28 | 2, 25, 26, 27 | oddvds 19589 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ (!‘𝑁) ∈ ℤ) → ((𝑂‘𝑥) ∥ (!‘𝑁) ↔ ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺))) |
29 | 19, 20, 24, 28 | syl3anc 1371 | . . . . . . 7 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → ((𝑂‘𝑥) ∥ (!‘𝑁) ↔ ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺))) |
30 | 18, 29 | mpbid 232 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺)) |
31 | 30 | ex 412 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((𝑂‘𝑥) ∈ (1...𝑁) → ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺))) |
32 | 31 | ralimdva 3173 | . . . 4 ⊢ (𝐺 ∈ Grp → (∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁) → ∀𝑥 ∈ 𝑋 ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺))) |
33 | 32 | imp 406 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → ∀𝑥 ∈ 𝑋 ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺)) |
34 | gexod.2 | . . . 4 ⊢ 𝐸 = (gEx‘𝐺) | |
35 | 2, 34, 26, 27 | gexlem2 19624 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (!‘𝑁) ∈ ℕ ∧ ∀𝑥 ∈ 𝑋 ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺)) → 𝐸 ∈ (1...(!‘𝑁))) |
36 | 1, 12, 33, 35 | syl3anc 1371 | . 2 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → 𝐸 ∈ (1...(!‘𝑁))) |
37 | elfznn 13613 | . 2 ⊢ (𝐸 ∈ (1...(!‘𝑁)) → 𝐸 ∈ ℕ) | |
38 | 36, 37 | syl 17 | 1 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → 𝐸 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 ∅c0 4352 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 1c1 11185 ℕcn 12293 ℤcz 12639 ℤ≥cuz 12903 ...cfz 13567 !cfa 14322 ∥ cdvds 16302 Basecbs 17258 0gc0g 17499 Grpcgrp 18973 .gcmg 19107 odcod 19566 gExcgex 19567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-fac 14323 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-dvds 16303 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-od 19570 df-gex 19571 |
This theorem is referenced by: gexcl2 19631 |
Copyright terms: Public domain | W3C validator |