MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexcl3 Structured version   Visualization version   GIF version

Theorem gexcl3 18353
Description: If the order of every group element is bounded by 𝑁, the group has finite exponent. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexod.1 𝑋 = (Base‘𝐺)
gexod.2 𝐸 = (gEx‘𝐺)
gexod.3 𝑂 = (od‘𝐺)
Assertion
Ref Expression
gexcl3 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁)) → 𝐸 ∈ ℕ)
Distinct variable groups:   𝑥,𝐸   𝑥,𝐺   𝑥,𝑁   𝑥,𝑋
Allowed substitution hint:   𝑂(𝑥)

Proof of Theorem gexcl3
StepHypRef Expression
1 simpl 476 . . 3 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁)) → 𝐺 ∈ Grp)
2 gexod.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
32grpbn0 17805 . . . . . . 7 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
4 r19.2z 4282 . . . . . . 7 ((𝑋 ≠ ∅ ∧ ∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁)) → ∃𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁))
53, 4sylan 575 . . . . . 6 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁)) → ∃𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁))
6 elfzuz2 12639 . . . . . . . 8 ((𝑂𝑥) ∈ (1...𝑁) → 𝑁 ∈ (ℤ‘1))
7 nnuz 12005 . . . . . . . 8 ℕ = (ℤ‘1)
86, 7syl6eleqr 2917 . . . . . . 7 ((𝑂𝑥) ∈ (1...𝑁) → 𝑁 ∈ ℕ)
98rexlimivw 3238 . . . . . 6 (∃𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁) → 𝑁 ∈ ℕ)
105, 9syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ)
1110nnnn0d 11678 . . . 4 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ0)
12 faccl 13363 . . . 4 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
1311, 12syl 17 . . 3 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁)) → (!‘𝑁) ∈ ℕ)
14 elfzuzb 12629 . . . . . . . . 9 ((𝑂𝑥) ∈ (1...𝑁) ↔ ((𝑂𝑥) ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ‘(𝑂𝑥))))
15 elnnuz 12006 . . . . . . . . . 10 ((𝑂𝑥) ∈ ℕ ↔ (𝑂𝑥) ∈ (ℤ‘1))
16 dvdsfac 15425 . . . . . . . . . 10 (((𝑂𝑥) ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑂𝑥))) → (𝑂𝑥) ∥ (!‘𝑁))
1715, 16sylanbr 577 . . . . . . . . 9 (((𝑂𝑥) ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ‘(𝑂𝑥))) → (𝑂𝑥) ∥ (!‘𝑁))
1814, 17sylbi 209 . . . . . . . 8 ((𝑂𝑥) ∈ (1...𝑁) → (𝑂𝑥) ∥ (!‘𝑁))
1918adantl 475 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑥𝑋) ∧ (𝑂𝑥) ∈ (1...𝑁)) → (𝑂𝑥) ∥ (!‘𝑁))
20 simpll 783 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑥𝑋) ∧ (𝑂𝑥) ∈ (1...𝑁)) → 𝐺 ∈ Grp)
21 simplr 785 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑥𝑋) ∧ (𝑂𝑥) ∈ (1...𝑁)) → 𝑥𝑋)
228adantl 475 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑥𝑋) ∧ (𝑂𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ)
2322nnnn0d 11678 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑥𝑋) ∧ (𝑂𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ0)
2423, 12syl 17 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑥𝑋) ∧ (𝑂𝑥) ∈ (1...𝑁)) → (!‘𝑁) ∈ ℕ)
2524nnzd 11809 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑥𝑋) ∧ (𝑂𝑥) ∈ (1...𝑁)) → (!‘𝑁) ∈ ℤ)
26 gexod.3 . . . . . . . . 9 𝑂 = (od‘𝐺)
27 eqid 2825 . . . . . . . . 9 (.g𝐺) = (.g𝐺)
28 eqid 2825 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
292, 26, 27, 28oddvds 18317 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝑋 ∧ (!‘𝑁) ∈ ℤ) → ((𝑂𝑥) ∥ (!‘𝑁) ↔ ((!‘𝑁)(.g𝐺)𝑥) = (0g𝐺)))
3020, 21, 25, 29syl3anc 1494 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑥𝑋) ∧ (𝑂𝑥) ∈ (1...𝑁)) → ((𝑂𝑥) ∥ (!‘𝑁) ↔ ((!‘𝑁)(.g𝐺)𝑥) = (0g𝐺)))
3119, 30mpbid 224 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑥𝑋) ∧ (𝑂𝑥) ∈ (1...𝑁)) → ((!‘𝑁)(.g𝐺)𝑥) = (0g𝐺))
3231ex 403 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((𝑂𝑥) ∈ (1...𝑁) → ((!‘𝑁)(.g𝐺)𝑥) = (0g𝐺)))
3332ralimdva 3171 . . . 4 (𝐺 ∈ Grp → (∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁) → ∀𝑥𝑋 ((!‘𝑁)(.g𝐺)𝑥) = (0g𝐺)))
3433imp 397 . . 3 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁)) → ∀𝑥𝑋 ((!‘𝑁)(.g𝐺)𝑥) = (0g𝐺))
35 gexod.2 . . . 4 𝐸 = (gEx‘𝐺)
362, 35, 27, 28gexlem2 18348 . . 3 ((𝐺 ∈ Grp ∧ (!‘𝑁) ∈ ℕ ∧ ∀𝑥𝑋 ((!‘𝑁)(.g𝐺)𝑥) = (0g𝐺)) → 𝐸 ∈ (1...(!‘𝑁)))
371, 13, 34, 36syl3anc 1494 . 2 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁)) → 𝐸 ∈ (1...(!‘𝑁)))
38 elfznn 12663 . 2 (𝐸 ∈ (1...(!‘𝑁)) → 𝐸 ∈ ℕ)
3937, 38syl 17 1 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 (𝑂𝑥) ∈ (1...𝑁)) → 𝐸 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164  wne 2999  wral 3117  wrex 3118  c0 4144   class class class wbr 4873  cfv 6123  (class class class)co 6905  1c1 10253  cn 11350  0cn0 11618  cz 11704  cuz 11968  ...cfz 12619  !cfa 13353  cdvds 15357  Basecbs 16222  0gc0g 16453  Grpcgrp 17776  .gcmg 17894  odcod 18295  gExcgex 18296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-sup 8617  df-inf 8618  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-n0 11619  df-z 11705  df-uz 11969  df-rp 12113  df-fz 12620  df-fl 12888  df-mod 12964  df-seq 13096  df-exp 13155  df-fac 13354  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-dvds 15358  df-0g 16455  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-grp 17779  df-minusg 17780  df-sbg 17781  df-mulg 17895  df-od 18299  df-gex 18300
This theorem is referenced by:  gexcl2  18355
  Copyright terms: Public domain W3C validator