| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gexcl3 | Structured version Visualization version GIF version | ||
| Description: If the order of every group element is bounded by 𝑁, the group has finite exponent. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| Ref | Expression |
|---|---|
| gexod.1 | ⊢ 𝑋 = (Base‘𝐺) |
| gexod.2 | ⊢ 𝐸 = (gEx‘𝐺) |
| gexod.3 | ⊢ 𝑂 = (od‘𝐺) |
| Ref | Expression |
|---|---|
| gexcl3 | ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → 𝐸 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → 𝐺 ∈ Grp) | |
| 2 | gexod.1 | . . . . . . . 8 ⊢ 𝑋 = (Base‘𝐺) | |
| 3 | 2 | grpbn0 18898 | . . . . . . 7 ⊢ (𝐺 ∈ Grp → 𝑋 ≠ ∅) |
| 4 | r19.2z 4458 | . . . . . . 7 ⊢ ((𝑋 ≠ ∅ ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → ∃𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) | |
| 5 | 3, 4 | sylan 580 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → ∃𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) |
| 6 | elfzuz2 13490 | . . . . . . . 8 ⊢ ((𝑂‘𝑥) ∈ (1...𝑁) → 𝑁 ∈ (ℤ≥‘1)) | |
| 7 | nnuz 12836 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
| 8 | 6, 7 | eleqtrrdi 2839 | . . . . . . 7 ⊢ ((𝑂‘𝑥) ∈ (1...𝑁) → 𝑁 ∈ ℕ) |
| 9 | 8 | rexlimivw 3130 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁) → 𝑁 ∈ ℕ) |
| 10 | 5, 9 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ) |
| 11 | 10 | nnnn0d 12503 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ0) |
| 12 | 11 | faccld 14249 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → (!‘𝑁) ∈ ℕ) |
| 13 | elfzuzb 13479 | . . . . . . . . 9 ⊢ ((𝑂‘𝑥) ∈ (1...𝑁) ↔ ((𝑂‘𝑥) ∈ (ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘(𝑂‘𝑥)))) | |
| 14 | elnnuz 12837 | . . . . . . . . . 10 ⊢ ((𝑂‘𝑥) ∈ ℕ ↔ (𝑂‘𝑥) ∈ (ℤ≥‘1)) | |
| 15 | dvdsfac 16296 | . . . . . . . . . 10 ⊢ (((𝑂‘𝑥) ∈ ℕ ∧ 𝑁 ∈ (ℤ≥‘(𝑂‘𝑥))) → (𝑂‘𝑥) ∥ (!‘𝑁)) | |
| 16 | 14, 15 | sylanbr 582 | . . . . . . . . 9 ⊢ (((𝑂‘𝑥) ∈ (ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘(𝑂‘𝑥))) → (𝑂‘𝑥) ∥ (!‘𝑁)) |
| 17 | 13, 16 | sylbi 217 | . . . . . . . 8 ⊢ ((𝑂‘𝑥) ∈ (1...𝑁) → (𝑂‘𝑥) ∥ (!‘𝑁)) |
| 18 | 17 | adantl 481 | . . . . . . 7 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → (𝑂‘𝑥) ∥ (!‘𝑁)) |
| 19 | simpll 766 | . . . . . . . 8 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → 𝐺 ∈ Grp) | |
| 20 | simplr 768 | . . . . . . . 8 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → 𝑥 ∈ 𝑋) | |
| 21 | 8 | adantl 481 | . . . . . . . . . . 11 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ) |
| 22 | 21 | nnnn0d 12503 | . . . . . . . . . 10 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → 𝑁 ∈ ℕ0) |
| 23 | 22 | faccld 14249 | . . . . . . . . 9 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → (!‘𝑁) ∈ ℕ) |
| 24 | 23 | nnzd 12556 | . . . . . . . 8 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → (!‘𝑁) ∈ ℤ) |
| 25 | gexod.3 | . . . . . . . . 9 ⊢ 𝑂 = (od‘𝐺) | |
| 26 | eqid 2729 | . . . . . . . . 9 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 27 | eqid 2729 | . . . . . . . . 9 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 28 | 2, 25, 26, 27 | oddvds 19477 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ (!‘𝑁) ∈ ℤ) → ((𝑂‘𝑥) ∥ (!‘𝑁) ↔ ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺))) |
| 29 | 19, 20, 24, 28 | syl3anc 1373 | . . . . . . 7 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → ((𝑂‘𝑥) ∥ (!‘𝑁) ↔ ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺))) |
| 30 | 18, 29 | mpbid 232 | . . . . . 6 ⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) ∧ (𝑂‘𝑥) ∈ (1...𝑁)) → ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺)) |
| 31 | 30 | ex 412 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((𝑂‘𝑥) ∈ (1...𝑁) → ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺))) |
| 32 | 31 | ralimdva 3145 | . . . 4 ⊢ (𝐺 ∈ Grp → (∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁) → ∀𝑥 ∈ 𝑋 ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺))) |
| 33 | 32 | imp 406 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → ∀𝑥 ∈ 𝑋 ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺)) |
| 34 | gexod.2 | . . . 4 ⊢ 𝐸 = (gEx‘𝐺) | |
| 35 | 2, 34, 26, 27 | gexlem2 19512 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (!‘𝑁) ∈ ℕ ∧ ∀𝑥 ∈ 𝑋 ((!‘𝑁)(.g‘𝐺)𝑥) = (0g‘𝐺)) → 𝐸 ∈ (1...(!‘𝑁))) |
| 36 | 1, 12, 33, 35 | syl3anc 1373 | . 2 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → 𝐸 ∈ (1...(!‘𝑁))) |
| 37 | elfznn 13514 | . 2 ⊢ (𝐸 ∈ (1...(!‘𝑁)) → 𝐸 ∈ ℕ) | |
| 38 | 36, 37 | syl 17 | 1 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 (𝑂‘𝑥) ∈ (1...𝑁)) → 𝐸 ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ∅c0 4296 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 1c1 11069 ℕcn 12186 ℤcz 12529 ℤ≥cuz 12793 ...cfz 13468 !cfa 14238 ∥ cdvds 16222 Basecbs 17179 0gc0g 17402 Grpcgrp 18865 .gcmg 18999 odcod 19454 gExcgex 19455 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-fac 14239 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-dvds 16223 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-od 19458 df-gex 19459 |
| This theorem is referenced by: gexcl2 19519 |
| Copyright terms: Public domain | W3C validator |