![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tfrlem7 | Structured version Visualization version GIF version |
Description: Lemma for transfinite recursion. The union of all acceptable functions is a function. (Contributed by NM, 9-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
Ref | Expression |
---|---|
tfrlem7 | ⊢ Fun recs(𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem.1 | . . 3 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
2 | 1 | tfrlem6 8409 | . 2 ⊢ Rel recs(𝐹) |
3 | 1 | recsfval 8408 | . . . . . . . . 9 ⊢ recs(𝐹) = ∪ 𝐴 |
4 | 3 | eleq2i 2821 | . . . . . . . 8 ⊢ (⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ↔ ⟨𝑥, 𝑢⟩ ∈ ∪ 𝐴) |
5 | eluni 4915 | . . . . . . . 8 ⊢ (⟨𝑥, 𝑢⟩ ∈ ∪ 𝐴 ↔ ∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) | |
6 | 4, 5 | bitri 274 | . . . . . . 7 ⊢ (⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ↔ ∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) |
7 | 3 | eleq2i 2821 | . . . . . . . 8 ⊢ (⟨𝑥, 𝑣⟩ ∈ recs(𝐹) ↔ ⟨𝑥, 𝑣⟩ ∈ ∪ 𝐴) |
8 | eluni 4915 | . . . . . . . 8 ⊢ (⟨𝑥, 𝑣⟩ ∈ ∪ 𝐴 ↔ ∃ℎ(⟨𝑥, 𝑣⟩ ∈ ℎ ∧ ℎ ∈ 𝐴)) | |
9 | 7, 8 | bitri 274 | . . . . . . 7 ⊢ (⟨𝑥, 𝑣⟩ ∈ recs(𝐹) ↔ ∃ℎ(⟨𝑥, 𝑣⟩ ∈ ℎ ∧ ℎ ∈ 𝐴)) |
10 | 6, 9 | anbi12i 626 | . . . . . 6 ⊢ ((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) ↔ (∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ ∃ℎ(⟨𝑥, 𝑣⟩ ∈ ℎ ∧ ℎ ∈ 𝐴))) |
11 | exdistrv 1951 | . . . . . 6 ⊢ (∃𝑔∃ℎ((⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ ℎ ∧ ℎ ∈ 𝐴)) ↔ (∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ ∃ℎ(⟨𝑥, 𝑣⟩ ∈ ℎ ∧ ℎ ∈ 𝐴))) | |
12 | 10, 11 | bitr4i 277 | . . . . 5 ⊢ ((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) ↔ ∃𝑔∃ℎ((⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ ℎ ∧ ℎ ∈ 𝐴))) |
13 | df-br 5153 | . . . . . . . . 9 ⊢ (𝑥𝑔𝑢 ↔ ⟨𝑥, 𝑢⟩ ∈ 𝑔) | |
14 | df-br 5153 | . . . . . . . . 9 ⊢ (𝑥ℎ𝑣 ↔ ⟨𝑥, 𝑣⟩ ∈ ℎ) | |
15 | 13, 14 | anbi12i 626 | . . . . . . . 8 ⊢ ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) ↔ (⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ ⟨𝑥, 𝑣⟩ ∈ ℎ)) |
16 | 1 | tfrlem5 8407 | . . . . . . . . 9 ⊢ ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐴) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |
17 | 16 | impcom 406 | . . . . . . . 8 ⊢ (((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) ∧ (𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐴)) → 𝑢 = 𝑣) |
18 | 15, 17 | sylanbr 580 | . . . . . . 7 ⊢ (((⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ ⟨𝑥, 𝑣⟩ ∈ ℎ) ∧ (𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐴)) → 𝑢 = 𝑣) |
19 | 18 | an4s 658 | . . . . . 6 ⊢ (((⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ ℎ ∧ ℎ ∈ 𝐴)) → 𝑢 = 𝑣) |
20 | 19 | exlimivv 1927 | . . . . 5 ⊢ (∃𝑔∃ℎ((⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ ℎ ∧ ℎ ∈ 𝐴)) → 𝑢 = 𝑣) |
21 | 12, 20 | sylbi 216 | . . . 4 ⊢ ((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣) |
22 | 21 | ax-gen 1789 | . . 3 ⊢ ∀𝑣((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣) |
23 | 22 | gen2 1790 | . 2 ⊢ ∀𝑥∀𝑢∀𝑣((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣) |
24 | dffun4 6569 | . 2 ⊢ (Fun recs(𝐹) ↔ (Rel recs(𝐹) ∧ ∀𝑥∀𝑢∀𝑣((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣))) | |
25 | 2, 23, 24 | mpbir2an 709 | 1 ⊢ Fun recs(𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∀wal 1531 = wceq 1533 ∃wex 1773 ∈ wcel 2098 {cab 2705 ∀wral 3058 ∃wrex 3067 ⟨cop 4638 ∪ cuni 4912 class class class wbr 5152 ↾ cres 5684 Rel wrel 5687 Oncon0 6374 Fun wfun 6547 Fn wfn 6548 ‘cfv 6553 recscrecs 8397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-fo 6559 df-fv 6561 df-ov 7429 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 |
This theorem is referenced by: tfrlem9 8412 tfrlem9a 8413 tfrlem10 8414 tfrlem14 8418 tfrlem16 8420 tfr1a 8421 tfr1 8424 |
Copyright terms: Public domain | W3C validator |