![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tfrlem7 | Structured version Visualization version GIF version |
Description: Lemma for transfinite recursion. The union of all acceptable functions is a function. (Contributed by NM, 9-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
Ref | Expression |
---|---|
tfrlem7 | ⊢ Fun recs(𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem.1 | . . 3 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
2 | 1 | tfrlem6 8380 | . 2 ⊢ Rel recs(𝐹) |
3 | 1 | recsfval 8379 | . . . . . . . . 9 ⊢ recs(𝐹) = ∪ 𝐴 |
4 | 3 | eleq2i 2819 | . . . . . . . 8 ⊢ (⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ↔ ⟨𝑥, 𝑢⟩ ∈ ∪ 𝐴) |
5 | eluni 4905 | . . . . . . . 8 ⊢ (⟨𝑥, 𝑢⟩ ∈ ∪ 𝐴 ↔ ∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) | |
6 | 4, 5 | bitri 275 | . . . . . . 7 ⊢ (⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ↔ ∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) |
7 | 3 | eleq2i 2819 | . . . . . . . 8 ⊢ (⟨𝑥, 𝑣⟩ ∈ recs(𝐹) ↔ ⟨𝑥, 𝑣⟩ ∈ ∪ 𝐴) |
8 | eluni 4905 | . . . . . . . 8 ⊢ (⟨𝑥, 𝑣⟩ ∈ ∪ 𝐴 ↔ ∃ℎ(⟨𝑥, 𝑣⟩ ∈ ℎ ∧ ℎ ∈ 𝐴)) | |
9 | 7, 8 | bitri 275 | . . . . . . 7 ⊢ (⟨𝑥, 𝑣⟩ ∈ recs(𝐹) ↔ ∃ℎ(⟨𝑥, 𝑣⟩ ∈ ℎ ∧ ℎ ∈ 𝐴)) |
10 | 6, 9 | anbi12i 626 | . . . . . 6 ⊢ ((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) ↔ (∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ ∃ℎ(⟨𝑥, 𝑣⟩ ∈ ℎ ∧ ℎ ∈ 𝐴))) |
11 | exdistrv 1951 | . . . . . 6 ⊢ (∃𝑔∃ℎ((⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ ℎ ∧ ℎ ∈ 𝐴)) ↔ (∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ ∃ℎ(⟨𝑥, 𝑣⟩ ∈ ℎ ∧ ℎ ∈ 𝐴))) | |
12 | 10, 11 | bitr4i 278 | . . . . 5 ⊢ ((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) ↔ ∃𝑔∃ℎ((⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ ℎ ∧ ℎ ∈ 𝐴))) |
13 | df-br 5142 | . . . . . . . . 9 ⊢ (𝑥𝑔𝑢 ↔ ⟨𝑥, 𝑢⟩ ∈ 𝑔) | |
14 | df-br 5142 | . . . . . . . . 9 ⊢ (𝑥ℎ𝑣 ↔ ⟨𝑥, 𝑣⟩ ∈ ℎ) | |
15 | 13, 14 | anbi12i 626 | . . . . . . . 8 ⊢ ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) ↔ (⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ ⟨𝑥, 𝑣⟩ ∈ ℎ)) |
16 | 1 | tfrlem5 8378 | . . . . . . . . 9 ⊢ ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐴) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |
17 | 16 | impcom 407 | . . . . . . . 8 ⊢ (((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) ∧ (𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐴)) → 𝑢 = 𝑣) |
18 | 15, 17 | sylanbr 581 | . . . . . . 7 ⊢ (((⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ ⟨𝑥, 𝑣⟩ ∈ ℎ) ∧ (𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐴)) → 𝑢 = 𝑣) |
19 | 18 | an4s 657 | . . . . . 6 ⊢ (((⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ ℎ ∧ ℎ ∈ 𝐴)) → 𝑢 = 𝑣) |
20 | 19 | exlimivv 1927 | . . . . 5 ⊢ (∃𝑔∃ℎ((⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ ℎ ∧ ℎ ∈ 𝐴)) → 𝑢 = 𝑣) |
21 | 12, 20 | sylbi 216 | . . . 4 ⊢ ((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣) |
22 | 21 | ax-gen 1789 | . . 3 ⊢ ∀𝑣((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣) |
23 | 22 | gen2 1790 | . 2 ⊢ ∀𝑥∀𝑢∀𝑣((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣) |
24 | dffun4 6552 | . 2 ⊢ (Fun recs(𝐹) ↔ (Rel recs(𝐹) ∧ ∀𝑥∀𝑢∀𝑣((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣))) | |
25 | 2, 23, 24 | mpbir2an 708 | 1 ⊢ Fun recs(𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1531 = wceq 1533 ∃wex 1773 ∈ wcel 2098 {cab 2703 ∀wral 3055 ∃wrex 3064 ⟨cop 4629 ∪ cuni 4902 class class class wbr 5141 ↾ cres 5671 Rel wrel 5674 Oncon0 6357 Fun wfun 6530 Fn wfn 6531 ‘cfv 6536 recscrecs 8368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-fo 6542 df-fv 6544 df-ov 7407 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 |
This theorem is referenced by: tfrlem9 8383 tfrlem9a 8384 tfrlem10 8385 tfrlem14 8389 tfrlem16 8391 tfr1a 8392 tfr1 8395 |
Copyright terms: Public domain | W3C validator |