![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tfrlem7 | Structured version Visualization version GIF version |
Description: Lemma for transfinite recursion. The union of all acceptable functions is a function. (Contributed by NM, 9-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
Ref | Expression |
---|---|
tfrlem7 | ⊢ Fun recs(𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem.1 | . . 3 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
2 | 1 | tfrlem6 8381 | . 2 ⊢ Rel recs(𝐹) |
3 | 1 | recsfval 8380 | . . . . . . . . 9 ⊢ recs(𝐹) = ∪ 𝐴 |
4 | 3 | eleq2i 2825 | . . . . . . . 8 ⊢ (⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ↔ ⟨𝑥, 𝑢⟩ ∈ ∪ 𝐴) |
5 | eluni 4911 | . . . . . . . 8 ⊢ (⟨𝑥, 𝑢⟩ ∈ ∪ 𝐴 ↔ ∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) | |
6 | 4, 5 | bitri 274 | . . . . . . 7 ⊢ (⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ↔ ∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) |
7 | 3 | eleq2i 2825 | . . . . . . . 8 ⊢ (⟨𝑥, 𝑣⟩ ∈ recs(𝐹) ↔ ⟨𝑥, 𝑣⟩ ∈ ∪ 𝐴) |
8 | eluni 4911 | . . . . . . . 8 ⊢ (⟨𝑥, 𝑣⟩ ∈ ∪ 𝐴 ↔ ∃ℎ(⟨𝑥, 𝑣⟩ ∈ ℎ ∧ ℎ ∈ 𝐴)) | |
9 | 7, 8 | bitri 274 | . . . . . . 7 ⊢ (⟨𝑥, 𝑣⟩ ∈ recs(𝐹) ↔ ∃ℎ(⟨𝑥, 𝑣⟩ ∈ ℎ ∧ ℎ ∈ 𝐴)) |
10 | 6, 9 | anbi12i 627 | . . . . . 6 ⊢ ((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) ↔ (∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ ∃ℎ(⟨𝑥, 𝑣⟩ ∈ ℎ ∧ ℎ ∈ 𝐴))) |
11 | exdistrv 1959 | . . . . . 6 ⊢ (∃𝑔∃ℎ((⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ ℎ ∧ ℎ ∈ 𝐴)) ↔ (∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ ∃ℎ(⟨𝑥, 𝑣⟩ ∈ ℎ ∧ ℎ ∈ 𝐴))) | |
12 | 10, 11 | bitr4i 277 | . . . . 5 ⊢ ((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) ↔ ∃𝑔∃ℎ((⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ ℎ ∧ ℎ ∈ 𝐴))) |
13 | df-br 5149 | . . . . . . . . 9 ⊢ (𝑥𝑔𝑢 ↔ ⟨𝑥, 𝑢⟩ ∈ 𝑔) | |
14 | df-br 5149 | . . . . . . . . 9 ⊢ (𝑥ℎ𝑣 ↔ ⟨𝑥, 𝑣⟩ ∈ ℎ) | |
15 | 13, 14 | anbi12i 627 | . . . . . . . 8 ⊢ ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) ↔ (⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ ⟨𝑥, 𝑣⟩ ∈ ℎ)) |
16 | 1 | tfrlem5 8379 | . . . . . . . . 9 ⊢ ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐴) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |
17 | 16 | impcom 408 | . . . . . . . 8 ⊢ (((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) ∧ (𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐴)) → 𝑢 = 𝑣) |
18 | 15, 17 | sylanbr 582 | . . . . . . 7 ⊢ (((⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ ⟨𝑥, 𝑣⟩ ∈ ℎ) ∧ (𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐴)) → 𝑢 = 𝑣) |
19 | 18 | an4s 658 | . . . . . 6 ⊢ (((⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ ℎ ∧ ℎ ∈ 𝐴)) → 𝑢 = 𝑣) |
20 | 19 | exlimivv 1935 | . . . . 5 ⊢ (∃𝑔∃ℎ((⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ ℎ ∧ ℎ ∈ 𝐴)) → 𝑢 = 𝑣) |
21 | 12, 20 | sylbi 216 | . . . 4 ⊢ ((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣) |
22 | 21 | ax-gen 1797 | . . 3 ⊢ ∀𝑣((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣) |
23 | 22 | gen2 1798 | . 2 ⊢ ∀𝑥∀𝑢∀𝑣((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣) |
24 | dffun4 6559 | . 2 ⊢ (Fun recs(𝐹) ↔ (Rel recs(𝐹) ∧ ∀𝑥∀𝑢∀𝑣((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣))) | |
25 | 2, 23, 24 | mpbir2an 709 | 1 ⊢ Fun recs(𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1539 = wceq 1541 ∃wex 1781 ∈ wcel 2106 {cab 2709 ∀wral 3061 ∃wrex 3070 ⟨cop 4634 ∪ cuni 4908 class class class wbr 5148 ↾ cres 5678 Rel wrel 5681 Oncon0 6364 Fun wfun 6537 Fn wfn 6538 ‘cfv 6543 recscrecs 8369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-ov 7411 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 |
This theorem is referenced by: tfrlem9 8384 tfrlem9a 8385 tfrlem10 8386 tfrlem14 8390 tfrlem16 8392 tfr1a 8393 tfr1 8396 |
Copyright terms: Public domain | W3C validator |