MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem7 Structured version   Visualization version   GIF version

Theorem tfrlem7 7633
Description: Lemma for transfinite recursion. The union of all acceptable functions is a function. (Contributed by NM, 9-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem7 Fun recs(𝐹)
Distinct variable group:   𝑥,𝑓,𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem7
Dummy variables 𝑔 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . 3 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem6 7632 . 2 Rel recs(𝐹)
31recsfval 7631 . . . . . . . . 9 recs(𝐹) = 𝐴
43eleq2i 2842 . . . . . . . 8 (⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ↔ ⟨𝑥, 𝑢⟩ ∈ 𝐴)
5 eluni 4578 . . . . . . . 8 (⟨𝑥, 𝑢⟩ ∈ 𝐴 ↔ ∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴))
64, 5bitri 264 . . . . . . 7 (⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ↔ ∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴))
73eleq2i 2842 . . . . . . . 8 (⟨𝑥, 𝑣⟩ ∈ recs(𝐹) ↔ ⟨𝑥, 𝑣⟩ ∈ 𝐴)
8 eluni 4578 . . . . . . . 8 (⟨𝑥, 𝑣⟩ ∈ 𝐴 ↔ ∃(⟨𝑥, 𝑣⟩ ∈ 𝐴))
97, 8bitri 264 . . . . . . 7 (⟨𝑥, 𝑣⟩ ∈ recs(𝐹) ↔ ∃(⟨𝑥, 𝑣⟩ ∈ 𝐴))
106, 9anbi12i 606 . . . . . 6 ((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) ↔ (∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴) ∧ ∃(⟨𝑥, 𝑣⟩ ∈ 𝐴)))
11 eeanv 2344 . . . . . 6 (∃𝑔((⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ 𝐴)) ↔ (∃𝑔(⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴) ∧ ∃(⟨𝑥, 𝑣⟩ ∈ 𝐴)))
1210, 11bitr4i 267 . . . . 5 ((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) ↔ ∃𝑔((⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ 𝐴)))
13 df-br 4788 . . . . . . . . 9 (𝑥𝑔𝑢 ↔ ⟨𝑥, 𝑢⟩ ∈ 𝑔)
14 df-br 4788 . . . . . . . . 9 (𝑥𝑣 ↔ ⟨𝑥, 𝑣⟩ ∈ )
1513, 14anbi12i 606 . . . . . . . 8 ((𝑥𝑔𝑢𝑥𝑣) ↔ (⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ ⟨𝑥, 𝑣⟩ ∈ ))
161tfrlem5 7630 . . . . . . . . 9 ((𝑔𝐴𝐴) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
1716impcom 394 . . . . . . . 8 (((𝑥𝑔𝑢𝑥𝑣) ∧ (𝑔𝐴𝐴)) → 𝑢 = 𝑣)
1815, 17sylanbr 565 . . . . . . 7 (((⟨𝑥, 𝑢⟩ ∈ 𝑔 ∧ ⟨𝑥, 𝑣⟩ ∈ ) ∧ (𝑔𝐴𝐴)) → 𝑢 = 𝑣)
1918an4s 633 . . . . . 6 (((⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ 𝐴)) → 𝑢 = 𝑣)
2019exlimivv 2012 . . . . 5 (∃𝑔((⟨𝑥, 𝑢⟩ ∈ 𝑔𝑔𝐴) ∧ (⟨𝑥, 𝑣⟩ ∈ 𝐴)) → 𝑢 = 𝑣)
2112, 20sylbi 207 . . . 4 ((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣)
2221ax-gen 1870 . . 3 𝑣((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣)
2322gen2 1871 . 2 𝑥𝑢𝑣((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣)
24 dffun4 6044 . 2 (Fun recs(𝐹) ↔ (Rel recs(𝐹) ∧ ∀𝑥𝑢𝑣((⟨𝑥, 𝑢⟩ ∈ recs(𝐹) ∧ ⟨𝑥, 𝑣⟩ ∈ recs(𝐹)) → 𝑢 = 𝑣)))
252, 23, 24mpbir2an 684 1 Fun recs(𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wal 1629   = wceq 1631  wex 1852  wcel 2145  {cab 2757  wral 3061  wrex 3062  cop 4323   cuni 4575   class class class wbr 4787  cres 5252  Rel wrel 5255  Oncon0 5867  Fun wfun 6026   Fn wfn 6027  cfv 6032  recscrecs 7621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-pss 3740  df-nul 4065  df-if 4227  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5824  df-ord 5870  df-on 5871  df-iota 5995  df-fun 6034  df-fn 6035  df-fv 6040  df-wrecs 7560  df-recs 7622
This theorem is referenced by:  tfrlem9  7635  tfrlem9a  7636  tfrlem10  7637  tfrlem14  7641  tfrlem16  7643  tfr1a  7644  tfr1  7647
  Copyright terms: Public domain W3C validator