Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tfrlem7 | Structured version Visualization version GIF version |
Description: Lemma for transfinite recursion. The union of all acceptable functions is a function. (Contributed by NM, 9-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
Ref | Expression |
---|---|
tfrlem7 | ⊢ Fun recs(𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem.1 | . . 3 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
2 | 1 | tfrlem6 8184 | . 2 ⊢ Rel recs(𝐹) |
3 | 1 | recsfval 8183 | . . . . . . . . 9 ⊢ recs(𝐹) = ∪ 𝐴 |
4 | 3 | eleq2i 2830 | . . . . . . . 8 ⊢ (〈𝑥, 𝑢〉 ∈ recs(𝐹) ↔ 〈𝑥, 𝑢〉 ∈ ∪ 𝐴) |
5 | eluni 4839 | . . . . . . . 8 ⊢ (〈𝑥, 𝑢〉 ∈ ∪ 𝐴 ↔ ∃𝑔(〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) | |
6 | 4, 5 | bitri 274 | . . . . . . 7 ⊢ (〈𝑥, 𝑢〉 ∈ recs(𝐹) ↔ ∃𝑔(〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) |
7 | 3 | eleq2i 2830 | . . . . . . . 8 ⊢ (〈𝑥, 𝑣〉 ∈ recs(𝐹) ↔ 〈𝑥, 𝑣〉 ∈ ∪ 𝐴) |
8 | eluni 4839 | . . . . . . . 8 ⊢ (〈𝑥, 𝑣〉 ∈ ∪ 𝐴 ↔ ∃ℎ(〈𝑥, 𝑣〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) | |
9 | 7, 8 | bitri 274 | . . . . . . 7 ⊢ (〈𝑥, 𝑣〉 ∈ recs(𝐹) ↔ ∃ℎ(〈𝑥, 𝑣〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) |
10 | 6, 9 | anbi12i 626 | . . . . . 6 ⊢ ((〈𝑥, 𝑢〉 ∈ recs(𝐹) ∧ 〈𝑥, 𝑣〉 ∈ recs(𝐹)) ↔ (∃𝑔(〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ ∃ℎ(〈𝑥, 𝑣〉 ∈ ℎ ∧ ℎ ∈ 𝐴))) |
11 | exdistrv 1960 | . . . . . 6 ⊢ (∃𝑔∃ℎ((〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ (〈𝑥, 𝑣〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) ↔ (∃𝑔(〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ ∃ℎ(〈𝑥, 𝑣〉 ∈ ℎ ∧ ℎ ∈ 𝐴))) | |
12 | 10, 11 | bitr4i 277 | . . . . 5 ⊢ ((〈𝑥, 𝑢〉 ∈ recs(𝐹) ∧ 〈𝑥, 𝑣〉 ∈ recs(𝐹)) ↔ ∃𝑔∃ℎ((〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ (〈𝑥, 𝑣〉 ∈ ℎ ∧ ℎ ∈ 𝐴))) |
13 | df-br 5071 | . . . . . . . . 9 ⊢ (𝑥𝑔𝑢 ↔ 〈𝑥, 𝑢〉 ∈ 𝑔) | |
14 | df-br 5071 | . . . . . . . . 9 ⊢ (𝑥ℎ𝑣 ↔ 〈𝑥, 𝑣〉 ∈ ℎ) | |
15 | 13, 14 | anbi12i 626 | . . . . . . . 8 ⊢ ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) ↔ (〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 〈𝑥, 𝑣〉 ∈ ℎ)) |
16 | 1 | tfrlem5 8182 | . . . . . . . . 9 ⊢ ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐴) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |
17 | 16 | impcom 407 | . . . . . . . 8 ⊢ (((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) ∧ (𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐴)) → 𝑢 = 𝑣) |
18 | 15, 17 | sylanbr 581 | . . . . . . 7 ⊢ (((〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 〈𝑥, 𝑣〉 ∈ ℎ) ∧ (𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐴)) → 𝑢 = 𝑣) |
19 | 18 | an4s 656 | . . . . . 6 ⊢ (((〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ (〈𝑥, 𝑣〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) → 𝑢 = 𝑣) |
20 | 19 | exlimivv 1936 | . . . . 5 ⊢ (∃𝑔∃ℎ((〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ (〈𝑥, 𝑣〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) → 𝑢 = 𝑣) |
21 | 12, 20 | sylbi 216 | . . . 4 ⊢ ((〈𝑥, 𝑢〉 ∈ recs(𝐹) ∧ 〈𝑥, 𝑣〉 ∈ recs(𝐹)) → 𝑢 = 𝑣) |
22 | 21 | ax-gen 1799 | . . 3 ⊢ ∀𝑣((〈𝑥, 𝑢〉 ∈ recs(𝐹) ∧ 〈𝑥, 𝑣〉 ∈ recs(𝐹)) → 𝑢 = 𝑣) |
23 | 22 | gen2 1800 | . 2 ⊢ ∀𝑥∀𝑢∀𝑣((〈𝑥, 𝑢〉 ∈ recs(𝐹) ∧ 〈𝑥, 𝑣〉 ∈ recs(𝐹)) → 𝑢 = 𝑣) |
24 | dffun4 6430 | . 2 ⊢ (Fun recs(𝐹) ↔ (Rel recs(𝐹) ∧ ∀𝑥∀𝑢∀𝑣((〈𝑥, 𝑢〉 ∈ recs(𝐹) ∧ 〈𝑥, 𝑣〉 ∈ recs(𝐹)) → 𝑢 = 𝑣))) | |
25 | 2, 23, 24 | mpbir2an 707 | 1 ⊢ Fun recs(𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 ∀wral 3063 ∃wrex 3064 〈cop 4564 ∪ cuni 4836 class class class wbr 5070 ↾ cres 5582 Rel wrel 5585 Oncon0 6251 Fun wfun 6412 Fn wfn 6413 ‘cfv 6418 recscrecs 8172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 df-ov 7258 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 |
This theorem is referenced by: tfrlem9 8187 tfrlem9a 8188 tfrlem10 8189 tfrlem14 8193 tfrlem16 8195 tfr1a 8196 tfr1 8199 |
Copyright terms: Public domain | W3C validator |