Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tfrlem7 | Structured version Visualization version GIF version |
Description: Lemma for transfinite recursion. The union of all acceptable functions is a function. (Contributed by NM, 9-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
Ref | Expression |
---|---|
tfrlem7 | ⊢ Fun recs(𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem.1 | . . 3 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
2 | 1 | tfrlem6 8200 | . 2 ⊢ Rel recs(𝐹) |
3 | 1 | recsfval 8199 | . . . . . . . . 9 ⊢ recs(𝐹) = ∪ 𝐴 |
4 | 3 | eleq2i 2830 | . . . . . . . 8 ⊢ (〈𝑥, 𝑢〉 ∈ recs(𝐹) ↔ 〈𝑥, 𝑢〉 ∈ ∪ 𝐴) |
5 | eluni 4842 | . . . . . . . 8 ⊢ (〈𝑥, 𝑢〉 ∈ ∪ 𝐴 ↔ ∃𝑔(〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) | |
6 | 4, 5 | bitri 274 | . . . . . . 7 ⊢ (〈𝑥, 𝑢〉 ∈ recs(𝐹) ↔ ∃𝑔(〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) |
7 | 3 | eleq2i 2830 | . . . . . . . 8 ⊢ (〈𝑥, 𝑣〉 ∈ recs(𝐹) ↔ 〈𝑥, 𝑣〉 ∈ ∪ 𝐴) |
8 | eluni 4842 | . . . . . . . 8 ⊢ (〈𝑥, 𝑣〉 ∈ ∪ 𝐴 ↔ ∃ℎ(〈𝑥, 𝑣〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) | |
9 | 7, 8 | bitri 274 | . . . . . . 7 ⊢ (〈𝑥, 𝑣〉 ∈ recs(𝐹) ↔ ∃ℎ(〈𝑥, 𝑣〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) |
10 | 6, 9 | anbi12i 627 | . . . . . 6 ⊢ ((〈𝑥, 𝑢〉 ∈ recs(𝐹) ∧ 〈𝑥, 𝑣〉 ∈ recs(𝐹)) ↔ (∃𝑔(〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ ∃ℎ(〈𝑥, 𝑣〉 ∈ ℎ ∧ ℎ ∈ 𝐴))) |
11 | exdistrv 1959 | . . . . . 6 ⊢ (∃𝑔∃ℎ((〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ (〈𝑥, 𝑣〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) ↔ (∃𝑔(〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ ∃ℎ(〈𝑥, 𝑣〉 ∈ ℎ ∧ ℎ ∈ 𝐴))) | |
12 | 10, 11 | bitr4i 277 | . . . . 5 ⊢ ((〈𝑥, 𝑢〉 ∈ recs(𝐹) ∧ 〈𝑥, 𝑣〉 ∈ recs(𝐹)) ↔ ∃𝑔∃ℎ((〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ (〈𝑥, 𝑣〉 ∈ ℎ ∧ ℎ ∈ 𝐴))) |
13 | df-br 5074 | . . . . . . . . 9 ⊢ (𝑥𝑔𝑢 ↔ 〈𝑥, 𝑢〉 ∈ 𝑔) | |
14 | df-br 5074 | . . . . . . . . 9 ⊢ (𝑥ℎ𝑣 ↔ 〈𝑥, 𝑣〉 ∈ ℎ) | |
15 | 13, 14 | anbi12i 627 | . . . . . . . 8 ⊢ ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) ↔ (〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 〈𝑥, 𝑣〉 ∈ ℎ)) |
16 | 1 | tfrlem5 8198 | . . . . . . . . 9 ⊢ ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐴) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |
17 | 16 | impcom 408 | . . . . . . . 8 ⊢ (((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) ∧ (𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐴)) → 𝑢 = 𝑣) |
18 | 15, 17 | sylanbr 582 | . . . . . . 7 ⊢ (((〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 〈𝑥, 𝑣〉 ∈ ℎ) ∧ (𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐴)) → 𝑢 = 𝑣) |
19 | 18 | an4s 657 | . . . . . 6 ⊢ (((〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ (〈𝑥, 𝑣〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) → 𝑢 = 𝑣) |
20 | 19 | exlimivv 1935 | . . . . 5 ⊢ (∃𝑔∃ℎ((〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ (〈𝑥, 𝑣〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) → 𝑢 = 𝑣) |
21 | 12, 20 | sylbi 216 | . . . 4 ⊢ ((〈𝑥, 𝑢〉 ∈ recs(𝐹) ∧ 〈𝑥, 𝑣〉 ∈ recs(𝐹)) → 𝑢 = 𝑣) |
22 | 21 | ax-gen 1798 | . . 3 ⊢ ∀𝑣((〈𝑥, 𝑢〉 ∈ recs(𝐹) ∧ 〈𝑥, 𝑣〉 ∈ recs(𝐹)) → 𝑢 = 𝑣) |
23 | 22 | gen2 1799 | . 2 ⊢ ∀𝑥∀𝑢∀𝑣((〈𝑥, 𝑢〉 ∈ recs(𝐹) ∧ 〈𝑥, 𝑣〉 ∈ recs(𝐹)) → 𝑢 = 𝑣) |
24 | dffun4 6438 | . 2 ⊢ (Fun recs(𝐹) ↔ (Rel recs(𝐹) ∧ ∀𝑥∀𝑢∀𝑣((〈𝑥, 𝑢〉 ∈ recs(𝐹) ∧ 〈𝑥, 𝑣〉 ∈ recs(𝐹)) → 𝑢 = 𝑣))) | |
25 | 2, 23, 24 | mpbir2an 708 | 1 ⊢ Fun recs(𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1537 = wceq 1539 ∃wex 1782 ∈ wcel 2106 {cab 2715 ∀wral 3064 ∃wrex 3065 〈cop 4567 ∪ cuni 4839 class class class wbr 5073 ↾ cres 5586 Rel wrel 5589 Oncon0 6259 Fun wfun 6420 Fn wfn 6421 ‘cfv 6426 recscrecs 8188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pr 5350 ax-un 7578 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-fo 6432 df-fv 6434 df-ov 7270 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 |
This theorem is referenced by: tfrlem9 8203 tfrlem9a 8204 tfrlem10 8205 tfrlem14 8209 tfrlem16 8211 tfr1a 8212 tfr1 8215 |
Copyright terms: Public domain | W3C validator |