Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoiqssbllem3 Structured version   Visualization version   GIF version

Theorem hoiqssbllem3 46629
Description: A n-dimensional ball contains a nonempty half-open interval with vertices with rational components. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoiqssbllem3.x (𝜑𝑋 ∈ Fin)
hoiqssbllem3.n (𝜑𝑋 ≠ ∅)
hoiqssbllem3.y (𝜑𝑌 ∈ (ℝ ↑m 𝑋))
hoiqssbllem3.e (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
hoiqssbllem3 (𝜑 → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
Distinct variable groups:   𝐸,𝑐,𝑑,𝑖   𝑋,𝑐,𝑑,𝑖   𝑌,𝑐,𝑑,𝑖   𝜑,𝑐,𝑑,𝑖

Proof of Theorem hoiqssbllem3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 hoiqssbllem3.x . . . . . . 7 (𝜑𝑋 ∈ Fin)
2 qex 12927 . . . . . . . . 9 ℚ ∈ V
32inex1 5275 . . . . . . . 8 (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∈ V
43a1i 11 . . . . . . 7 ((𝜑𝑖𝑋) → (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∈ V)
5 hoiqssbllem3.y . . . . . . . . . . . . 13 (𝜑𝑌 ∈ (ℝ ↑m 𝑋))
6 elmapi 8825 . . . . . . . . . . . . 13 (𝑌 ∈ (ℝ ↑m 𝑋) → 𝑌:𝑋⟶ℝ)
75, 6syl 17 . . . . . . . . . . . 12 (𝜑𝑌:𝑋⟶ℝ)
87ffvelcdmda 7059 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ℝ)
9 hoiqssbllem3.e . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ+)
10 2rp 12963 . . . . . . . . . . . . . . 15 2 ∈ ℝ+
1110a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℝ+)
12 hoiqssbllem3.n . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ≠ ∅)
13 hashnncl 14338 . . . . . . . . . . . . . . . . . 18 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
141, 13syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
1512, 14mpbird 257 . . . . . . . . . . . . . . . 16 (𝜑 → (♯‘𝑋) ∈ ℕ)
16 nnrp 12970 . . . . . . . . . . . . . . . 16 ((♯‘𝑋) ∈ ℕ → (♯‘𝑋) ∈ ℝ+)
1715, 16syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘𝑋) ∈ ℝ+)
1817rpsqrtcld 15385 . . . . . . . . . . . . . 14 (𝜑 → (√‘(♯‘𝑋)) ∈ ℝ+)
1911, 18rpmulcld 13018 . . . . . . . . . . . . 13 (𝜑 → (2 · (√‘(♯‘𝑋))) ∈ ℝ+)
209, 19rpdivcld 13019 . . . . . . . . . . . 12 (𝜑 → (𝐸 / (2 · (√‘(♯‘𝑋)))) ∈ ℝ+)
2120adantr 480 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝐸 / (2 · (√‘(♯‘𝑋)))) ∈ ℝ+)
228, 21ltsubrpd 13034 . . . . . . . . . 10 ((𝜑𝑖𝑋) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) < (𝑌𝑖))
2321rpred 13002 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐸 / (2 · (√‘(♯‘𝑋)))) ∈ ℝ)
248, 23resubcld 11613 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ)
2524, 8ltnled 11328 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) < (𝑌𝑖) ↔ ¬ (𝑌𝑖) ≤ ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))))
2622, 25mpbid 232 . . . . . . . . 9 ((𝜑𝑖𝑋) → ¬ (𝑌𝑖) ≤ ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))))
2724rexrd 11231 . . . . . . . . . 10 ((𝜑𝑖𝑋) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ*)
288rexrd 11231 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ℝ*)
2927, 28qinioo 45540 . . . . . . . . 9 ((𝜑𝑖𝑋) → ((ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) = ∅ ↔ (𝑌𝑖) ≤ ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))))
3026, 29mtbird 325 . . . . . . . 8 ((𝜑𝑖𝑋) → ¬ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) = ∅)
3130neqned 2933 . . . . . . 7 ((𝜑𝑖𝑋) → (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ≠ ∅)
321, 4, 31choicefi 45201 . . . . . 6 (𝜑 → ∃𝑐(𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))))
33 simpl 482 . . . . . . . . . . . . 13 ((𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))) → 𝑐 Fn 𝑋)
34 nfra1 3262 . . . . . . . . . . . . . . 15 𝑖𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))
35 rspa 3227 . . . . . . . . . . . . . . . . 17 ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))
36 elinel1 4167 . . . . . . . . . . . . . . . . 17 ((𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) → (𝑐𝑖) ∈ ℚ)
3735, 36syl 17 . . . . . . . . . . . . . . . 16 ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ ℚ)
3837ex 412 . . . . . . . . . . . . . . 15 (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) → (𝑖𝑋 → (𝑐𝑖) ∈ ℚ))
3934, 38ralrimi 3236 . . . . . . . . . . . . . 14 (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) → ∀𝑖𝑋 (𝑐𝑖) ∈ ℚ)
4039adantl 481 . . . . . . . . . . . . 13 ((𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))) → ∀𝑖𝑋 (𝑐𝑖) ∈ ℚ)
4133, 40jca 511 . . . . . . . . . . . 12 ((𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))) → (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ ℚ))
4241adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))) → (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ ℚ))
43 ffnfv 7094 . . . . . . . . . . 11 (𝑐:𝑋⟶ℚ ↔ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ ℚ))
4442, 43sylibr 234 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))) → 𝑐:𝑋⟶ℚ)
452a1i 11 . . . . . . . . . . . 12 (𝜑 → ℚ ∈ V)
46 elmapg 8815 . . . . . . . . . . . 12 ((ℚ ∈ V ∧ 𝑋 ∈ Fin) → (𝑐 ∈ (ℚ ↑m 𝑋) ↔ 𝑐:𝑋⟶ℚ))
4745, 1, 46syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑐 ∈ (ℚ ↑m 𝑋) ↔ 𝑐:𝑋⟶ℚ))
4847adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))) → (𝑐 ∈ (ℚ ↑m 𝑋) ↔ 𝑐:𝑋⟶ℚ))
4944, 48mpbird 257 . . . . . . . . 9 ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))) → 𝑐 ∈ (ℚ ↑m 𝑋))
50 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))) → ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))
5149, 50jca 511 . . . . . . . 8 ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))) → (𝑐 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))))
5251ex 412 . . . . . . 7 (𝜑 → ((𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))) → (𝑐 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))))
5352eximdv 1917 . . . . . 6 (𝜑 → (∃𝑐(𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))) → ∃𝑐(𝑐 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))))
5432, 53mpd 15 . . . . 5 (𝜑 → ∃𝑐(𝑐 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))))
55 df-rex 3055 . . . . 5 (∃𝑐 ∈ (ℚ ↑m 𝑋)∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ↔ ∃𝑐(𝑐 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))))
5654, 55sylibr 234 . . . 4 (𝜑 → ∃𝑐 ∈ (ℚ ↑m 𝑋)∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))
572inex1 5275 . . . . . . . 8 (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) ∈ V
5857a1i 11 . . . . . . 7 ((𝜑𝑖𝑋) → (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) ∈ V)
598, 21ltaddrpd 13035 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝑌𝑖) < ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))
608, 23readdcld 11210 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ)
618, 60ltnled 11328 . . . . . . . . . 10 ((𝜑𝑖𝑋) → ((𝑌𝑖) < ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ↔ ¬ ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ≤ (𝑌𝑖)))
6259, 61mpbid 232 . . . . . . . . 9 ((𝜑𝑖𝑋) → ¬ ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ≤ (𝑌𝑖))
6360rexrd 11231 . . . . . . . . . 10 ((𝜑𝑖𝑋) → ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ*)
6428, 63qinioo 45540 . . . . . . . . 9 ((𝜑𝑖𝑋) → ((ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) = ∅ ↔ ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ≤ (𝑌𝑖)))
6562, 64mtbird 325 . . . . . . . 8 ((𝜑𝑖𝑋) → ¬ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) = ∅)
6665neqned 2933 . . . . . . 7 ((𝜑𝑖𝑋) → (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) ≠ ∅)
671, 58, 66choicefi 45201 . . . . . 6 (𝜑 → ∃𝑑(𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
68 simpl 482 . . . . . . . . . . . . 13 ((𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → 𝑑 Fn 𝑋)
69 nfra1 3262 . . . . . . . . . . . . . . 15 𝑖𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
70 rspa 3227 . . . . . . . . . . . . . . . . 17 ((∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))
71 elinel1 4167 . . . . . . . . . . . . . . . . 17 ((𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) → (𝑑𝑖) ∈ ℚ)
7270, 71syl 17 . . . . . . . . . . . . . . . 16 ((∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ℚ)
7372ex 412 . . . . . . . . . . . . . . 15 (∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) → (𝑖𝑋 → (𝑑𝑖) ∈ ℚ))
7469, 73ralrimi 3236 . . . . . . . . . . . . . 14 (∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) → ∀𝑖𝑋 (𝑑𝑖) ∈ ℚ)
7574adantl 481 . . . . . . . . . . . . 13 ((𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → ∀𝑖𝑋 (𝑑𝑖) ∈ ℚ)
7668, 75jca 511 . . . . . . . . . . . 12 ((𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ ℚ))
7776adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ ℚ))
78 ffnfv 7094 . . . . . . . . . . 11 (𝑑:𝑋⟶ℚ ↔ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ ℚ))
7977, 78sylibr 234 . . . . . . . . . 10 ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑑:𝑋⟶ℚ)
80 elmapg 8815 . . . . . . . . . . . 12 ((ℚ ∈ V ∧ 𝑋 ∈ Fin) → (𝑑 ∈ (ℚ ↑m 𝑋) ↔ 𝑑:𝑋⟶ℚ))
8145, 1, 80syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑑 ∈ (ℚ ↑m 𝑋) ↔ 𝑑:𝑋⟶ℚ))
8281adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → (𝑑 ∈ (ℚ ↑m 𝑋) ↔ 𝑑:𝑋⟶ℚ))
8379, 82mpbird 257 . . . . . . . . 9 ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑑 ∈ (ℚ ↑m 𝑋))
84 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))
8583, 84jca 511 . . . . . . . 8 ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → (𝑑 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
8685ex 412 . . . . . . 7 (𝜑 → ((𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → (𝑑 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))))
8786eximdv 1917 . . . . . 6 (𝜑 → (∃𝑑(𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → ∃𝑑(𝑑 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))))
8867, 87mpd 15 . . . . 5 (𝜑 → ∃𝑑(𝑑 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
89 df-rex 3055 . . . . 5 (∃𝑑 ∈ (ℚ ↑m 𝑋)∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) ↔ ∃𝑑(𝑑 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
9088, 89sylibr 234 . . . 4 (𝜑 → ∃𝑑 ∈ (ℚ ↑m 𝑋)∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))
9156, 90jca 511 . . 3 (𝜑 → (∃𝑐 ∈ (ℚ ↑m 𝑋)∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∃𝑑 ∈ (ℚ ↑m 𝑋)∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
92 reeanv 3210 . . 3 (∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) ↔ (∃𝑐 ∈ (ℚ ↑m 𝑋)∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∃𝑑 ∈ (ℚ ↑m 𝑋)∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
9391, 92sylibr 234 . 2 (𝜑 → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
94 nfv 1914 . . . . . . . 8 𝑖((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋))
9534, 69nfan 1899 . . . . . . . 8 𝑖(∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))
9694, 95nfan 1899 . . . . . . 7 𝑖(((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
971ad3antrrr 730 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑋 ∈ Fin)
9812ad3antrrr 730 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑋 ≠ ∅)
995ad3antrrr 730 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑌 ∈ (ℝ ↑m 𝑋))
100 elmapi 8825 . . . . . . . . . 10 (𝑐 ∈ (ℚ ↑m 𝑋) → 𝑐:𝑋⟶ℚ)
101 qssre 12925 . . . . . . . . . . 11 ℚ ⊆ ℝ
102101a1i 11 . . . . . . . . . 10 (𝑐 ∈ (ℚ ↑m 𝑋) → ℚ ⊆ ℝ)
103100, 102fssd 6708 . . . . . . . . 9 (𝑐 ∈ (ℚ ↑m 𝑋) → 𝑐:𝑋⟶ℝ)
104103adantl 481 . . . . . . . 8 ((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) → 𝑐:𝑋⟶ℝ)
105104ad2antrr 726 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑐:𝑋⟶ℝ)
106 elmapi 8825 . . . . . . . . 9 (𝑑 ∈ (ℚ ↑m 𝑋) → 𝑑:𝑋⟶ℚ)
107101a1i 11 . . . . . . . . 9 (𝑑 ∈ (ℚ ↑m 𝑋) → ℚ ⊆ ℝ)
108106, 107fssd 6708 . . . . . . . 8 (𝑑 ∈ (ℚ ↑m 𝑋) → 𝑑:𝑋⟶ℝ)
109108ad2antlr 727 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑑:𝑋⟶ℝ)
1109ad3antrrr 730 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝐸 ∈ ℝ+)
11135elin2d 4171 . . . . . . . . 9 ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))
112111adantlr 715 . . . . . . . 8 (((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))
113112adantll 714 . . . . . . 7 (((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))
11470elin2d 4171 . . . . . . . . 9 ((∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
115114adantll 714 . . . . . . . 8 (((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
116115adantll 714 . . . . . . 7 (((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
11796, 97, 98, 99, 105, 109, 110, 113, 116hoiqssbllem1 46627 . . . . . 6 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)))
118 simpl 482 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → ((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)))
119 fveq2 6861 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (𝑐𝑖) = (𝑐𝑘))
120 fveq2 6861 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑘 → (𝑌𝑖) = (𝑌𝑘))
121120oveq1d 7405 . . . . . . . . . . . . . . 15 (𝑖 = 𝑘 → ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) = ((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋))))))
122121, 120oveq12d 7408 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)) = (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘)))
123122ineq2d 4186 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) = (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))))
124119, 123eleq12d 2823 . . . . . . . . . . . 12 (𝑖 = 𝑘 → ((𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ↔ (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘)))))
125124cbvralvw 3216 . . . . . . . . . . 11 (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ↔ ∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))))
126125biimpi 216 . . . . . . . . . 10 (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) → ∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))))
127126adantr 480 . . . . . . . . 9 ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → ∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))))
128 fveq2 6861 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (𝑑𝑖) = (𝑑𝑘))
129120oveq1d 7405 . . . . . . . . . . . . . . 15 (𝑖 = 𝑘 → ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) = ((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))
130120, 129oveq12d 7408 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))) = ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
131130ineq2d 4186 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) = (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))
132128, 131eleq12d 2823 . . . . . . . . . . . 12 (𝑖 = 𝑘 → ((𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) ↔ (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
133132cbvralvw 3216 . . . . . . . . . . 11 (∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) ↔ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))
134133biimpi 216 . . . . . . . . . 10 (∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) → ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))
135134adantl 481 . . . . . . . . 9 ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))
136127, 135jca 511 . . . . . . . 8 ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
137136adantl 481 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
138 nfv 1914 . . . . . . . 8 𝑖(((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
1391ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑋 ∈ Fin)
14012ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑋 ≠ ∅)
1415ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑌 ∈ (ℝ ↑m 𝑋))
142104ad2antrr 726 . . . . . . . 8 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑐:𝑋⟶ℝ)
143108ad2antlr 727 . . . . . . . 8 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑑:𝑋⟶ℝ)
1449ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝐸 ∈ ℝ+)
145125, 111sylanbr 582 . . . . . . . . . 10 ((∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))
146145adantlr 715 . . . . . . . . 9 (((∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))
147146adantll 714 . . . . . . . 8 (((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))
148133, 114sylanbr 582 . . . . . . . . . 10 ((∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
149148adantll 714 . . . . . . . . 9 (((∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
150149adantll 714 . . . . . . . 8 (((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
151138, 139, 140, 141, 142, 143, 144, 147, 150hoiqssbllem2 46628 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))
152118, 137, 151syl2anc 584 . . . . . 6 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))
153117, 152jca 511 . . . . 5 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → (𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
154153ex 412 . . . 4 (((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) → ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → (𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))))
155154reximdva 3147 . . 3 ((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) → (∃𝑑 ∈ (ℚ ↑m 𝑋)(∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → ∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))))
156155reximdva 3147 . 2 (𝜑 → (∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))))
15793, 156mpd 15 1 (𝜑 → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  cin 3916  wss 3917  c0 4299   class class class wbr 5110   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  Xcixp 8873  Fincfn 8921  cr 11074   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  cq 12914  +crp 12958  (,)cioo 13313  [,)cico 13315  chash 14302  csqrt 15206  distcds 17236  ballcbl 21258  ℝ^crrx 25290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xadd 13080  df-ioo 13317  df-ico 13319  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-drng 20647  df-field 20648  df-staf 20755  df-srng 20756  df-lmod 20775  df-lss 20845  df-sra 21087  df-rgmod 21088  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-cnfld 21272  df-refld 21521  df-dsmm 21648  df-frlm 21663  df-nm 24477  df-tng 24479  df-tcph 25076  df-rrx 25292
This theorem is referenced by:  hoiqssbl  46630
  Copyright terms: Public domain W3C validator