Step | Hyp | Ref
| Expression |
1 | | hoiqssbllem3.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ Fin) |
2 | | qex 12701 |
. . . . . . . . 9
⊢ ℚ
∈ V |
3 | 2 | inex1 5241 |
. . . . . . . 8
⊢ (ℚ
∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∈ V |
4 | 3 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∈ V) |
5 | | hoiqssbllem3.y |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑌 ∈ (ℝ ↑m 𝑋)) |
6 | | elmapi 8637 |
. . . . . . . . . . . . 13
⊢ (𝑌 ∈ (ℝ
↑m 𝑋)
→ 𝑌:𝑋⟶ℝ) |
7 | 5, 6 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑌:𝑋⟶ℝ) |
8 | 7 | ffvelrnda 6961 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝑌‘𝑖) ∈ ℝ) |
9 | | hoiqssbllem3.e |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
10 | | 2rp 12735 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℝ+ |
11 | 10 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 2 ∈
ℝ+) |
12 | | hoiqssbllem3.n |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑋 ≠ ∅) |
13 | | hashnncl 14081 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑋 ∈ Fin →
((♯‘𝑋) ∈
ℕ ↔ 𝑋 ≠
∅)) |
14 | 1, 13 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅)) |
15 | 12, 14 | mpbird 256 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (♯‘𝑋) ∈
ℕ) |
16 | | nnrp 12741 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝑋)
∈ ℕ → (♯‘𝑋) ∈
ℝ+) |
17 | 15, 16 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (♯‘𝑋) ∈
ℝ+) |
18 | 17 | rpsqrtcld 15123 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
(√‘(♯‘𝑋)) ∈
ℝ+) |
19 | 11, 18 | rpmulcld 12788 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (2 ·
(√‘(♯‘𝑋))) ∈
ℝ+) |
20 | 9, 19 | rpdivcld 12789 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐸 / (2 ·
(√‘(♯‘𝑋)))) ∈
ℝ+) |
21 | 20 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐸 / (2 ·
(√‘(♯‘𝑋)))) ∈
ℝ+) |
22 | 8, 21 | ltsubrpd 12804 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋))))) < (𝑌‘𝑖)) |
23 | 21 | rpred 12772 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝐸 / (2 ·
(√‘(♯‘𝑋)))) ∈ ℝ) |
24 | 8, 23 | resubcld 11403 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋))))) ∈ ℝ) |
25 | 24, 8 | ltnled 11122 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋))))) < (𝑌‘𝑖) ↔ ¬ (𝑌‘𝑖) ≤ ((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋))))))) |
26 | 22, 25 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ¬ (𝑌‘𝑖) ≤ ((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))) |
27 | 24 | rexrd 11025 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋))))) ∈
ℝ*) |
28 | 8 | rexrd 11025 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝑌‘𝑖) ∈
ℝ*) |
29 | 27, 28 | qinioo 43073 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ((ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) = ∅ ↔ (𝑌‘𝑖) ≤ ((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋))))))) |
30 | 26, 29 | mtbird 325 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ¬ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) = ∅) |
31 | 30 | neqned 2950 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ≠ ∅) |
32 | 1, 4, 31 | choicefi 42740 |
. . . . . 6
⊢ (𝜑 → ∃𝑐(𝑐 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))))) |
33 | | simpl 483 |
. . . . . . . . . . . . 13
⊢ ((𝑐 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖)))) → 𝑐 Fn 𝑋) |
34 | | nfra1 3144 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑖∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) |
35 | | rspa 3132 |
. . . . . . . . . . . . . . . . 17
⊢
((∀𝑖 ∈
𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∧ 𝑖 ∈ 𝑋) → (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖)))) |
36 | | elinel1 4129 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) → (𝑐‘𝑖) ∈ ℚ) |
37 | 35, 36 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑖 ∈
𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∧ 𝑖 ∈ 𝑋) → (𝑐‘𝑖) ∈ ℚ) |
38 | 37 | ex 413 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑖 ∈
𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) → (𝑖 ∈ 𝑋 → (𝑐‘𝑖) ∈ ℚ)) |
39 | 34, 38 | ralrimi 3141 |
. . . . . . . . . . . . . 14
⊢
(∀𝑖 ∈
𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) → ∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ ℚ) |
40 | 39 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑐 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖)))) → ∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ ℚ) |
41 | 33, 40 | jca 512 |
. . . . . . . . . . . 12
⊢ ((𝑐 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖)))) → (𝑐 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ ℚ)) |
42 | 41 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))))) → (𝑐 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ ℚ)) |
43 | | ffnfv 6992 |
. . . . . . . . . . 11
⊢ (𝑐:𝑋⟶ℚ ↔ (𝑐 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ ℚ)) |
44 | 42, 43 | sylibr 233 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))))) → 𝑐:𝑋⟶ℚ) |
45 | 2 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℚ ∈
V) |
46 | | elmapg 8628 |
. . . . . . . . . . . 12
⊢ ((ℚ
∈ V ∧ 𝑋 ∈
Fin) → (𝑐 ∈
(ℚ ↑m 𝑋) ↔ 𝑐:𝑋⟶ℚ)) |
47 | 45, 1, 46 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑐 ∈ (ℚ ↑m 𝑋) ↔ 𝑐:𝑋⟶ℚ)) |
48 | 47 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))))) → (𝑐 ∈ (ℚ ↑m 𝑋) ↔ 𝑐:𝑋⟶ℚ)) |
49 | 44, 48 | mpbird 256 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))))) → 𝑐 ∈ (ℚ ↑m 𝑋)) |
50 | | simprr 770 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))))) → ∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖)))) |
51 | 49, 50 | jca 512 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))))) → (𝑐 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))))) |
52 | 51 | ex 413 |
. . . . . . 7
⊢ (𝜑 → ((𝑐 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖)))) → (𝑐 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖)))))) |
53 | 52 | eximdv 1920 |
. . . . . 6
⊢ (𝜑 → (∃𝑐(𝑐 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖)))) → ∃𝑐(𝑐 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖)))))) |
54 | 32, 53 | mpd 15 |
. . . . 5
⊢ (𝜑 → ∃𝑐(𝑐 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))))) |
55 | | df-rex 3070 |
. . . . 5
⊢
(∃𝑐 ∈
(ℚ ↑m 𝑋)∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ↔ ∃𝑐(𝑐 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))))) |
56 | 54, 55 | sylibr 233 |
. . . 4
⊢ (𝜑 → ∃𝑐 ∈ (ℚ ↑m 𝑋)∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖)))) |
57 | 2 | inex1 5241 |
. . . . . . . 8
⊢ (ℚ
∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))) ∈ V |
58 | 57 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))) ∈ V) |
59 | 8, 21 | ltaddrpd 12805 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (𝑌‘𝑖) < ((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋)))))) |
60 | 8, 23 | readdcld 11004 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))) ∈ ℝ) |
61 | 8, 60 | ltnled 11122 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ((𝑌‘𝑖) < ((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))) ↔ ¬ ((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))) ≤ (𝑌‘𝑖))) |
62 | 59, 61 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ¬ ((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))) ≤ (𝑌‘𝑖)) |
63 | 60 | rexrd 11025 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))) ∈
ℝ*) |
64 | 28, 63 | qinioo 43073 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ((ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))) = ∅ ↔ ((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))) ≤ (𝑌‘𝑖))) |
65 | 62, 64 | mtbird 325 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → ¬ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))) = ∅) |
66 | 65 | neqned 2950 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋) → (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))) ≠ ∅) |
67 | 1, 58, 66 | choicefi 42740 |
. . . . . 6
⊢ (𝜑 → ∃𝑑(𝑑 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) |
68 | | simpl 483 |
. . . . . . . . . . . . 13
⊢ ((𝑑 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋)))))))) → 𝑑 Fn 𝑋) |
69 | | nfra1 3144 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑖∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))) |
70 | | rspa 3132 |
. . . . . . . . . . . . . . . . 17
⊢
((∀𝑖 ∈
𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))) ∧ 𝑖 ∈ 𝑋) → (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋)))))))) |
71 | | elinel1 4129 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))) → (𝑑‘𝑖) ∈ ℚ) |
72 | 70, 71 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑖 ∈
𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))) ∧ 𝑖 ∈ 𝑋) → (𝑑‘𝑖) ∈ ℚ) |
73 | 72 | ex 413 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑖 ∈
𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))) → (𝑖 ∈ 𝑋 → (𝑑‘𝑖) ∈ ℚ)) |
74 | 69, 73 | ralrimi 3141 |
. . . . . . . . . . . . . 14
⊢
(∀𝑖 ∈
𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))) → ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ ℚ) |
75 | 74 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑑 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋)))))))) → ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ ℚ) |
76 | 68, 75 | jca 512 |
. . . . . . . . . . . 12
⊢ ((𝑑 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋)))))))) → (𝑑 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ ℚ)) |
77 | 76 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) → (𝑑 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ ℚ)) |
78 | | ffnfv 6992 |
. . . . . . . . . . 11
⊢ (𝑑:𝑋⟶ℚ ↔ (𝑑 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ ℚ)) |
79 | 77, 78 | sylibr 233 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) → 𝑑:𝑋⟶ℚ) |
80 | | elmapg 8628 |
. . . . . . . . . . . 12
⊢ ((ℚ
∈ V ∧ 𝑋 ∈
Fin) → (𝑑 ∈
(ℚ ↑m 𝑋) ↔ 𝑑:𝑋⟶ℚ)) |
81 | 45, 1, 80 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑑 ∈ (ℚ ↑m 𝑋) ↔ 𝑑:𝑋⟶ℚ)) |
82 | 81 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) → (𝑑 ∈ (ℚ ↑m 𝑋) ↔ 𝑑:𝑋⟶ℚ)) |
83 | 79, 82 | mpbird 256 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) → 𝑑 ∈ (ℚ ↑m 𝑋)) |
84 | | simprr 770 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) → ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋)))))))) |
85 | 83, 84 | jca 512 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) → (𝑑 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) |
86 | 85 | ex 413 |
. . . . . . 7
⊢ (𝜑 → ((𝑑 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋)))))))) → (𝑑 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋)))))))))) |
87 | 86 | eximdv 1920 |
. . . . . 6
⊢ (𝜑 → (∃𝑑(𝑑 Fn 𝑋 ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋)))))))) → ∃𝑑(𝑑 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋)))))))))) |
88 | 67, 87 | mpd 15 |
. . . . 5
⊢ (𝜑 → ∃𝑑(𝑑 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) |
89 | | df-rex 3070 |
. . . . 5
⊢
(∃𝑑 ∈
(ℚ ↑m 𝑋)∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))) ↔ ∃𝑑(𝑑 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) |
90 | 88, 89 | sylibr 233 |
. . . 4
⊢ (𝜑 → ∃𝑑 ∈ (ℚ ↑m 𝑋)∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋)))))))) |
91 | 56, 90 | jca 512 |
. . 3
⊢ (𝜑 → (∃𝑐 ∈ (ℚ ↑m 𝑋)∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∧ ∃𝑑 ∈ (ℚ ↑m 𝑋)∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) |
92 | | reeanv 3294 |
. . 3
⊢
(∃𝑐 ∈
(ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋)))))))) ↔ (∃𝑐 ∈ (ℚ ↑m 𝑋)∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∧ ∃𝑑 ∈ (ℚ ↑m 𝑋)∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) |
93 | 91, 92 | sylibr 233 |
. 2
⊢ (𝜑 → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) |
94 | | nfv 1917 |
. . . . . . . 8
⊢
Ⅎ𝑖((𝜑 ∧ 𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) |
95 | 34, 69 | nfan 1902 |
. . . . . . . 8
⊢
Ⅎ𝑖(∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋)))))))) |
96 | 94, 95 | nfan 1902 |
. . . . . . 7
⊢
Ⅎ𝑖(((𝜑 ∧ 𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) |
97 | 1 | ad3antrrr 727 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) → 𝑋 ∈ Fin) |
98 | 12 | ad3antrrr 727 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) → 𝑋 ≠ ∅) |
99 | 5 | ad3antrrr 727 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) → 𝑌 ∈ (ℝ ↑m 𝑋)) |
100 | | elmapi 8637 |
. . . . . . . . . 10
⊢ (𝑐 ∈ (ℚ
↑m 𝑋)
→ 𝑐:𝑋⟶ℚ) |
101 | | qssre 12699 |
. . . . . . . . . . 11
⊢ ℚ
⊆ ℝ |
102 | 101 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑐 ∈ (ℚ
↑m 𝑋)
→ ℚ ⊆ ℝ) |
103 | 100, 102 | fssd 6618 |
. . . . . . . . 9
⊢ (𝑐 ∈ (ℚ
↑m 𝑋)
→ 𝑐:𝑋⟶ℝ) |
104 | 103 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ (ℚ ↑m 𝑋)) → 𝑐:𝑋⟶ℝ) |
105 | 104 | ad2antrr 723 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) → 𝑐:𝑋⟶ℝ) |
106 | | elmapi 8637 |
. . . . . . . . 9
⊢ (𝑑 ∈ (ℚ
↑m 𝑋)
→ 𝑑:𝑋⟶ℚ) |
107 | 101 | a1i 11 |
. . . . . . . . 9
⊢ (𝑑 ∈ (ℚ
↑m 𝑋)
→ ℚ ⊆ ℝ) |
108 | 106, 107 | fssd 6618 |
. . . . . . . 8
⊢ (𝑑 ∈ (ℚ
↑m 𝑋)
→ 𝑑:𝑋⟶ℝ) |
109 | 108 | ad2antlr 724 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) → 𝑑:𝑋⟶ℝ) |
110 | 9 | ad3antrrr 727 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) → 𝐸 ∈
ℝ+) |
111 | 35 | elin2d 4133 |
. . . . . . . . 9
⊢
((∀𝑖 ∈
𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∧ 𝑖 ∈ 𝑋) → (𝑐‘𝑖) ∈ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) |
112 | 111 | adantlr 712 |
. . . . . . . 8
⊢
(((∀𝑖 ∈
𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋)))))))) ∧ 𝑖 ∈ 𝑋) → (𝑐‘𝑖) ∈ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) |
113 | 112 | adantll 711 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑐 ∈ (ℚ
↑m 𝑋))
∧ 𝑑 ∈ (ℚ
↑m 𝑋))
∧ (∀𝑖 ∈
𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) ∧ 𝑖 ∈ 𝑋) → (𝑐‘𝑖) ∈ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) |
114 | 70 | elin2d 4133 |
. . . . . . . . 9
⊢
((∀𝑖 ∈
𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))) ∧ 𝑖 ∈ 𝑋) → (𝑑‘𝑖) ∈ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))) |
115 | 114 | adantll 711 |
. . . . . . . 8
⊢
(((∀𝑖 ∈
𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋)))))))) ∧ 𝑖 ∈ 𝑋) → (𝑑‘𝑖) ∈ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))) |
116 | 115 | adantll 711 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑐 ∈ (ℚ
↑m 𝑋))
∧ 𝑑 ∈ (ℚ
↑m 𝑋))
∧ (∀𝑖 ∈
𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) ∧ 𝑖 ∈ 𝑋) → (𝑑‘𝑖) ∈ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))) |
117 | 96, 97, 98, 99, 105, 109, 110, 113, 116 | hoiqssbllem1 44160 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) → 𝑌 ∈ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖))) |
118 | | simpl 483 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) → ((𝜑 ∧ 𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋))) |
119 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑘 → (𝑐‘𝑖) = (𝑐‘𝑘)) |
120 | | fveq2 6774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑘 → (𝑌‘𝑖) = (𝑌‘𝑘)) |
121 | 120 | oveq1d 7290 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑘 → ((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋))))) = ((𝑌‘𝑘) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))) |
122 | 121, 120 | oveq12d 7293 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑘 → (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖)) = (((𝑌‘𝑘) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑘))) |
123 | 122 | ineq2d 4146 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑘 → (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) = (ℚ ∩ (((𝑌‘𝑘) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑘)))) |
124 | 119, 123 | eleq12d 2833 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑘 → ((𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ↔ (𝑐‘𝑘) ∈ (ℚ ∩ (((𝑌‘𝑘) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑘))))) |
125 | 124 | cbvralvw 3383 |
. . . . . . . . . . 11
⊢
(∀𝑖 ∈
𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ↔ ∀𝑘 ∈ 𝑋 (𝑐‘𝑘) ∈ (ℚ ∩ (((𝑌‘𝑘) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑘)))) |
126 | 125 | biimpi 215 |
. . . . . . . . . 10
⊢
(∀𝑖 ∈
𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) → ∀𝑘 ∈ 𝑋 (𝑐‘𝑘) ∈ (ℚ ∩ (((𝑌‘𝑘) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑘)))) |
127 | 126 | adantr 481 |
. . . . . . . . 9
⊢
((∀𝑖 ∈
𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋)))))))) → ∀𝑘 ∈ 𝑋 (𝑐‘𝑘) ∈ (ℚ ∩ (((𝑌‘𝑘) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑘)))) |
128 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑘 → (𝑑‘𝑖) = (𝑑‘𝑘)) |
129 | 120 | oveq1d 7290 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑘 → ((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))) = ((𝑌‘𝑘) + (𝐸 / (2 ·
(√‘(♯‘𝑋)))))) |
130 | 120, 129 | oveq12d 7293 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑘 → ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋)))))) = ((𝑌‘𝑘)(,)((𝑌‘𝑘) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))) |
131 | 130 | ineq2d 4146 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑘 → (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))) = (ℚ ∩ ((𝑌‘𝑘)(,)((𝑌‘𝑘) + (𝐸 / (2 ·
(√‘(♯‘𝑋)))))))) |
132 | 128, 131 | eleq12d 2833 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑘 → ((𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))) ↔ (𝑑‘𝑘) ∈ (ℚ ∩ ((𝑌‘𝑘)(,)((𝑌‘𝑘) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) |
133 | 132 | cbvralvw 3383 |
. . . . . . . . . . 11
⊢
(∀𝑖 ∈
𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))) ↔ ∀𝑘 ∈ 𝑋 (𝑑‘𝑘) ∈ (ℚ ∩ ((𝑌‘𝑘)(,)((𝑌‘𝑘) + (𝐸 / (2 ·
(√‘(♯‘𝑋)))))))) |
134 | 133 | biimpi 215 |
. . . . . . . . . 10
⊢
(∀𝑖 ∈
𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))) → ∀𝑘 ∈ 𝑋 (𝑑‘𝑘) ∈ (ℚ ∩ ((𝑌‘𝑘)(,)((𝑌‘𝑘) + (𝐸 / (2 ·
(√‘(♯‘𝑋)))))))) |
135 | 134 | adantl 482 |
. . . . . . . . 9
⊢
((∀𝑖 ∈
𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋)))))))) → ∀𝑘 ∈ 𝑋 (𝑑‘𝑘) ∈ (ℚ ∩ ((𝑌‘𝑘)(,)((𝑌‘𝑘) + (𝐸 / (2 ·
(√‘(♯‘𝑋)))))))) |
136 | 127, 135 | jca 512 |
. . . . . . . 8
⊢
((∀𝑖 ∈
𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋)))))))) → (∀𝑘 ∈ 𝑋 (𝑐‘𝑘) ∈ (ℚ ∩ (((𝑌‘𝑘) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑘))) ∧ ∀𝑘 ∈ 𝑋 (𝑑‘𝑘) ∈ (ℚ ∩ ((𝑌‘𝑘)(,)((𝑌‘𝑘) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) |
137 | 136 | adantl 482 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) → (∀𝑘 ∈ 𝑋 (𝑐‘𝑘) ∈ (ℚ ∩ (((𝑌‘𝑘) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑘))) ∧ ∀𝑘 ∈ 𝑋 (𝑑‘𝑘) ∈ (ℚ ∩ ((𝑌‘𝑘)(,)((𝑌‘𝑘) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) |
138 | | nfv 1917 |
. . . . . . . 8
⊢
Ⅎ𝑖(((𝜑 ∧ 𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘 ∈ 𝑋 (𝑐‘𝑘) ∈ (ℚ ∩ (((𝑌‘𝑘) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑘))) ∧ ∀𝑘 ∈ 𝑋 (𝑑‘𝑘) ∈ (ℚ ∩ ((𝑌‘𝑘)(,)((𝑌‘𝑘) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) |
139 | 1 | ad3antrrr 727 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘 ∈ 𝑋 (𝑐‘𝑘) ∈ (ℚ ∩ (((𝑌‘𝑘) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑘))) ∧ ∀𝑘 ∈ 𝑋 (𝑑‘𝑘) ∈ (ℚ ∩ ((𝑌‘𝑘)(,)((𝑌‘𝑘) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) → 𝑋 ∈ Fin) |
140 | 12 | ad3antrrr 727 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘 ∈ 𝑋 (𝑐‘𝑘) ∈ (ℚ ∩ (((𝑌‘𝑘) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑘))) ∧ ∀𝑘 ∈ 𝑋 (𝑑‘𝑘) ∈ (ℚ ∩ ((𝑌‘𝑘)(,)((𝑌‘𝑘) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) → 𝑋 ≠ ∅) |
141 | 5 | ad3antrrr 727 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘 ∈ 𝑋 (𝑐‘𝑘) ∈ (ℚ ∩ (((𝑌‘𝑘) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑘))) ∧ ∀𝑘 ∈ 𝑋 (𝑑‘𝑘) ∈ (ℚ ∩ ((𝑌‘𝑘)(,)((𝑌‘𝑘) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) → 𝑌 ∈ (ℝ ↑m 𝑋)) |
142 | 104 | ad2antrr 723 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘 ∈ 𝑋 (𝑐‘𝑘) ∈ (ℚ ∩ (((𝑌‘𝑘) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑘))) ∧ ∀𝑘 ∈ 𝑋 (𝑑‘𝑘) ∈ (ℚ ∩ ((𝑌‘𝑘)(,)((𝑌‘𝑘) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) → 𝑐:𝑋⟶ℝ) |
143 | 108 | ad2antlr 724 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘 ∈ 𝑋 (𝑐‘𝑘) ∈ (ℚ ∩ (((𝑌‘𝑘) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑘))) ∧ ∀𝑘 ∈ 𝑋 (𝑑‘𝑘) ∈ (ℚ ∩ ((𝑌‘𝑘)(,)((𝑌‘𝑘) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) → 𝑑:𝑋⟶ℝ) |
144 | 9 | ad3antrrr 727 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘 ∈ 𝑋 (𝑐‘𝑘) ∈ (ℚ ∩ (((𝑌‘𝑘) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑘))) ∧ ∀𝑘 ∈ 𝑋 (𝑑‘𝑘) ∈ (ℚ ∩ ((𝑌‘𝑘)(,)((𝑌‘𝑘) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) → 𝐸 ∈
ℝ+) |
145 | 125, 111 | sylanbr 582 |
. . . . . . . . . 10
⊢
((∀𝑘 ∈
𝑋 (𝑐‘𝑘) ∈ (ℚ ∩ (((𝑌‘𝑘) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑘))) ∧ 𝑖 ∈ 𝑋) → (𝑐‘𝑖) ∈ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) |
146 | 145 | adantlr 712 |
. . . . . . . . 9
⊢
(((∀𝑘 ∈
𝑋 (𝑐‘𝑘) ∈ (ℚ ∩ (((𝑌‘𝑘) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑘))) ∧ ∀𝑘 ∈ 𝑋 (𝑑‘𝑘) ∈ (ℚ ∩ ((𝑌‘𝑘)(,)((𝑌‘𝑘) + (𝐸 / (2 ·
(√‘(♯‘𝑋)))))))) ∧ 𝑖 ∈ 𝑋) → (𝑐‘𝑖) ∈ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) |
147 | 146 | adantll 711 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑐 ∈ (ℚ
↑m 𝑋))
∧ 𝑑 ∈ (ℚ
↑m 𝑋))
∧ (∀𝑘 ∈
𝑋 (𝑐‘𝑘) ∈ (ℚ ∩ (((𝑌‘𝑘) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑘))) ∧ ∀𝑘 ∈ 𝑋 (𝑑‘𝑘) ∈ (ℚ ∩ ((𝑌‘𝑘)(,)((𝑌‘𝑘) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) ∧ 𝑖 ∈ 𝑋) → (𝑐‘𝑖) ∈ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) |
148 | 133, 114 | sylanbr 582 |
. . . . . . . . . 10
⊢
((∀𝑘 ∈
𝑋 (𝑑‘𝑘) ∈ (ℚ ∩ ((𝑌‘𝑘)(,)((𝑌‘𝑘) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))) ∧ 𝑖 ∈ 𝑋) → (𝑑‘𝑖) ∈ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))) |
149 | 148 | adantll 711 |
. . . . . . . . 9
⊢
(((∀𝑘 ∈
𝑋 (𝑐‘𝑘) ∈ (ℚ ∩ (((𝑌‘𝑘) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑘))) ∧ ∀𝑘 ∈ 𝑋 (𝑑‘𝑘) ∈ (ℚ ∩ ((𝑌‘𝑘)(,)((𝑌‘𝑘) + (𝐸 / (2 ·
(√‘(♯‘𝑋)))))))) ∧ 𝑖 ∈ 𝑋) → (𝑑‘𝑖) ∈ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))) |
150 | 149 | adantll 711 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑐 ∈ (ℚ
↑m 𝑋))
∧ 𝑑 ∈ (ℚ
↑m 𝑋))
∧ (∀𝑘 ∈
𝑋 (𝑐‘𝑘) ∈ (ℚ ∩ (((𝑌‘𝑘) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑘))) ∧ ∀𝑘 ∈ 𝑋 (𝑑‘𝑘) ∈ (ℚ ∩ ((𝑌‘𝑘)(,)((𝑌‘𝑘) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) ∧ 𝑖 ∈ 𝑋) → (𝑑‘𝑖) ∈ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))) |
151 | 138, 139,
140, 141, 142, 143, 144, 147, 150 | hoiqssbllem2 44161 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘 ∈ 𝑋 (𝑐‘𝑘) ∈ (ℚ ∩ (((𝑌‘𝑘) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑘))) ∧ ∀𝑘 ∈ 𝑋 (𝑑‘𝑘) ∈ (ℚ ∩ ((𝑌‘𝑘)(,)((𝑌‘𝑘) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) → X𝑖 ∈
𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)) |
152 | 118, 137,
151 | syl2anc 584 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) → X𝑖 ∈
𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)) |
153 | 117, 152 | jca 512 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋))))))))) → (𝑌 ∈ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ∧ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))) |
154 | 153 | ex 413 |
. . . 4
⊢ (((𝜑 ∧ 𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) → ((∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋)))))))) → (𝑌 ∈ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ∧ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))) |
155 | 154 | reximdva 3203 |
. . 3
⊢ ((𝜑 ∧ 𝑐 ∈ (ℚ ↑m 𝑋)) → (∃𝑑 ∈ (ℚ
↑m 𝑋)(∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋)))))))) → ∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌 ∈ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ∧ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))) |
156 | 155 | reximdva 3203 |
. 2
⊢ (𝜑 → (∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(∀𝑖 ∈ 𝑋 (𝑐‘𝑖) ∈ (ℚ ∩ (((𝑌‘𝑖) − (𝐸 / (2 ·
(√‘(♯‘𝑋)))))(,)(𝑌‘𝑖))) ∧ ∀𝑖 ∈ 𝑋 (𝑑‘𝑖) ∈ (ℚ ∩ ((𝑌‘𝑖)(,)((𝑌‘𝑖) + (𝐸 / (2 ·
(√‘(♯‘𝑋)))))))) → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌 ∈ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ∧ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))) |
157 | 93, 156 | mpd 15 |
1
⊢ (𝜑 → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌 ∈ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ∧ X𝑖 ∈ 𝑋 ((𝑐‘𝑖)[,)(𝑑‘𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))) |