Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoiqssbllem3 Structured version   Visualization version   GIF version

Theorem hoiqssbllem3 46615
Description: A n-dimensional ball contains a nonempty half-open interval with vertices with rational components. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoiqssbllem3.x (𝜑𝑋 ∈ Fin)
hoiqssbllem3.n (𝜑𝑋 ≠ ∅)
hoiqssbllem3.y (𝜑𝑌 ∈ (ℝ ↑m 𝑋))
hoiqssbllem3.e (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
hoiqssbllem3 (𝜑 → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
Distinct variable groups:   𝐸,𝑐,𝑑,𝑖   𝑋,𝑐,𝑑,𝑖   𝑌,𝑐,𝑑,𝑖   𝜑,𝑐,𝑑,𝑖

Proof of Theorem hoiqssbllem3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 hoiqssbllem3.x . . . . . . 7 (𝜑𝑋 ∈ Fin)
2 qex 12896 . . . . . . . . 9 ℚ ∈ V
32inex1 5267 . . . . . . . 8 (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∈ V
43a1i 11 . . . . . . 7 ((𝜑𝑖𝑋) → (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∈ V)
5 hoiqssbllem3.y . . . . . . . . . . . . 13 (𝜑𝑌 ∈ (ℝ ↑m 𝑋))
6 elmapi 8799 . . . . . . . . . . . . 13 (𝑌 ∈ (ℝ ↑m 𝑋) → 𝑌:𝑋⟶ℝ)
75, 6syl 17 . . . . . . . . . . . 12 (𝜑𝑌:𝑋⟶ℝ)
87ffvelcdmda 7038 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ℝ)
9 hoiqssbllem3.e . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ+)
10 2rp 12932 . . . . . . . . . . . . . . 15 2 ∈ ℝ+
1110a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℝ+)
12 hoiqssbllem3.n . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ≠ ∅)
13 hashnncl 14307 . . . . . . . . . . . . . . . . . 18 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
141, 13syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
1512, 14mpbird 257 . . . . . . . . . . . . . . . 16 (𝜑 → (♯‘𝑋) ∈ ℕ)
16 nnrp 12939 . . . . . . . . . . . . . . . 16 ((♯‘𝑋) ∈ ℕ → (♯‘𝑋) ∈ ℝ+)
1715, 16syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘𝑋) ∈ ℝ+)
1817rpsqrtcld 15354 . . . . . . . . . . . . . 14 (𝜑 → (√‘(♯‘𝑋)) ∈ ℝ+)
1911, 18rpmulcld 12987 . . . . . . . . . . . . 13 (𝜑 → (2 · (√‘(♯‘𝑋))) ∈ ℝ+)
209, 19rpdivcld 12988 . . . . . . . . . . . 12 (𝜑 → (𝐸 / (2 · (√‘(♯‘𝑋)))) ∈ ℝ+)
2120adantr 480 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝐸 / (2 · (√‘(♯‘𝑋)))) ∈ ℝ+)
228, 21ltsubrpd 13003 . . . . . . . . . 10 ((𝜑𝑖𝑋) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) < (𝑌𝑖))
2321rpred 12971 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐸 / (2 · (√‘(♯‘𝑋)))) ∈ ℝ)
248, 23resubcld 11582 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ)
2524, 8ltnled 11297 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) < (𝑌𝑖) ↔ ¬ (𝑌𝑖) ≤ ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))))
2622, 25mpbid 232 . . . . . . . . 9 ((𝜑𝑖𝑋) → ¬ (𝑌𝑖) ≤ ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))))
2724rexrd 11200 . . . . . . . . . 10 ((𝜑𝑖𝑋) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ*)
288rexrd 11200 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ℝ*)
2927, 28qinioo 45526 . . . . . . . . 9 ((𝜑𝑖𝑋) → ((ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) = ∅ ↔ (𝑌𝑖) ≤ ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))))
3026, 29mtbird 325 . . . . . . . 8 ((𝜑𝑖𝑋) → ¬ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) = ∅)
3130neqned 2932 . . . . . . 7 ((𝜑𝑖𝑋) → (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ≠ ∅)
321, 4, 31choicefi 45187 . . . . . 6 (𝜑 → ∃𝑐(𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))))
33 simpl 482 . . . . . . . . . . . . 13 ((𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))) → 𝑐 Fn 𝑋)
34 nfra1 3259 . . . . . . . . . . . . . . 15 𝑖𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))
35 rspa 3224 . . . . . . . . . . . . . . . . 17 ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))
36 elinel1 4160 . . . . . . . . . . . . . . . . 17 ((𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) → (𝑐𝑖) ∈ ℚ)
3735, 36syl 17 . . . . . . . . . . . . . . . 16 ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ ℚ)
3837ex 412 . . . . . . . . . . . . . . 15 (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) → (𝑖𝑋 → (𝑐𝑖) ∈ ℚ))
3934, 38ralrimi 3233 . . . . . . . . . . . . . 14 (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) → ∀𝑖𝑋 (𝑐𝑖) ∈ ℚ)
4039adantl 481 . . . . . . . . . . . . 13 ((𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))) → ∀𝑖𝑋 (𝑐𝑖) ∈ ℚ)
4133, 40jca 511 . . . . . . . . . . . 12 ((𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))) → (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ ℚ))
4241adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))) → (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ ℚ))
43 ffnfv 7073 . . . . . . . . . . 11 (𝑐:𝑋⟶ℚ ↔ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ ℚ))
4442, 43sylibr 234 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))) → 𝑐:𝑋⟶ℚ)
452a1i 11 . . . . . . . . . . . 12 (𝜑 → ℚ ∈ V)
46 elmapg 8789 . . . . . . . . . . . 12 ((ℚ ∈ V ∧ 𝑋 ∈ Fin) → (𝑐 ∈ (ℚ ↑m 𝑋) ↔ 𝑐:𝑋⟶ℚ))
4745, 1, 46syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑐 ∈ (ℚ ↑m 𝑋) ↔ 𝑐:𝑋⟶ℚ))
4847adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))) → (𝑐 ∈ (ℚ ↑m 𝑋) ↔ 𝑐:𝑋⟶ℚ))
4944, 48mpbird 257 . . . . . . . . 9 ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))) → 𝑐 ∈ (ℚ ↑m 𝑋))
50 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))) → ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))
5149, 50jca 511 . . . . . . . 8 ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))) → (𝑐 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))))
5251ex 412 . . . . . . 7 (𝜑 → ((𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))) → (𝑐 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))))
5352eximdv 1917 . . . . . 6 (𝜑 → (∃𝑐(𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))) → ∃𝑐(𝑐 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))))
5432, 53mpd 15 . . . . 5 (𝜑 → ∃𝑐(𝑐 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))))
55 df-rex 3054 . . . . 5 (∃𝑐 ∈ (ℚ ↑m 𝑋)∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ↔ ∃𝑐(𝑐 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))))
5654, 55sylibr 234 . . . 4 (𝜑 → ∃𝑐 ∈ (ℚ ↑m 𝑋)∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))
572inex1 5267 . . . . . . . 8 (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) ∈ V
5857a1i 11 . . . . . . 7 ((𝜑𝑖𝑋) → (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) ∈ V)
598, 21ltaddrpd 13004 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝑌𝑖) < ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))
608, 23readdcld 11179 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ)
618, 60ltnled 11297 . . . . . . . . . 10 ((𝜑𝑖𝑋) → ((𝑌𝑖) < ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ↔ ¬ ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ≤ (𝑌𝑖)))
6259, 61mpbid 232 . . . . . . . . 9 ((𝜑𝑖𝑋) → ¬ ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ≤ (𝑌𝑖))
6360rexrd 11200 . . . . . . . . . 10 ((𝜑𝑖𝑋) → ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ*)
6428, 63qinioo 45526 . . . . . . . . 9 ((𝜑𝑖𝑋) → ((ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) = ∅ ↔ ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ≤ (𝑌𝑖)))
6562, 64mtbird 325 . . . . . . . 8 ((𝜑𝑖𝑋) → ¬ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) = ∅)
6665neqned 2932 . . . . . . 7 ((𝜑𝑖𝑋) → (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) ≠ ∅)
671, 58, 66choicefi 45187 . . . . . 6 (𝜑 → ∃𝑑(𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
68 simpl 482 . . . . . . . . . . . . 13 ((𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → 𝑑 Fn 𝑋)
69 nfra1 3259 . . . . . . . . . . . . . . 15 𝑖𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
70 rspa 3224 . . . . . . . . . . . . . . . . 17 ((∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))
71 elinel1 4160 . . . . . . . . . . . . . . . . 17 ((𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) → (𝑑𝑖) ∈ ℚ)
7270, 71syl 17 . . . . . . . . . . . . . . . 16 ((∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ℚ)
7372ex 412 . . . . . . . . . . . . . . 15 (∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) → (𝑖𝑋 → (𝑑𝑖) ∈ ℚ))
7469, 73ralrimi 3233 . . . . . . . . . . . . . 14 (∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) → ∀𝑖𝑋 (𝑑𝑖) ∈ ℚ)
7574adantl 481 . . . . . . . . . . . . 13 ((𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → ∀𝑖𝑋 (𝑑𝑖) ∈ ℚ)
7668, 75jca 511 . . . . . . . . . . . 12 ((𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ ℚ))
7776adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ ℚ))
78 ffnfv 7073 . . . . . . . . . . 11 (𝑑:𝑋⟶ℚ ↔ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ ℚ))
7977, 78sylibr 234 . . . . . . . . . 10 ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑑:𝑋⟶ℚ)
80 elmapg 8789 . . . . . . . . . . . 12 ((ℚ ∈ V ∧ 𝑋 ∈ Fin) → (𝑑 ∈ (ℚ ↑m 𝑋) ↔ 𝑑:𝑋⟶ℚ))
8145, 1, 80syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑑 ∈ (ℚ ↑m 𝑋) ↔ 𝑑:𝑋⟶ℚ))
8281adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → (𝑑 ∈ (ℚ ↑m 𝑋) ↔ 𝑑:𝑋⟶ℚ))
8379, 82mpbird 257 . . . . . . . . 9 ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑑 ∈ (ℚ ↑m 𝑋))
84 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))
8583, 84jca 511 . . . . . . . 8 ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → (𝑑 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
8685ex 412 . . . . . . 7 (𝜑 → ((𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → (𝑑 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))))
8786eximdv 1917 . . . . . 6 (𝜑 → (∃𝑑(𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → ∃𝑑(𝑑 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))))
8867, 87mpd 15 . . . . 5 (𝜑 → ∃𝑑(𝑑 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
89 df-rex 3054 . . . . 5 (∃𝑑 ∈ (ℚ ↑m 𝑋)∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) ↔ ∃𝑑(𝑑 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
9088, 89sylibr 234 . . . 4 (𝜑 → ∃𝑑 ∈ (ℚ ↑m 𝑋)∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))
9156, 90jca 511 . . 3 (𝜑 → (∃𝑐 ∈ (ℚ ↑m 𝑋)∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∃𝑑 ∈ (ℚ ↑m 𝑋)∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
92 reeanv 3207 . . 3 (∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) ↔ (∃𝑐 ∈ (ℚ ↑m 𝑋)∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∃𝑑 ∈ (ℚ ↑m 𝑋)∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
9391, 92sylibr 234 . 2 (𝜑 → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
94 nfv 1914 . . . . . . . 8 𝑖((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋))
9534, 69nfan 1899 . . . . . . . 8 𝑖(∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))
9694, 95nfan 1899 . . . . . . 7 𝑖(((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
971ad3antrrr 730 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑋 ∈ Fin)
9812ad3antrrr 730 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑋 ≠ ∅)
995ad3antrrr 730 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑌 ∈ (ℝ ↑m 𝑋))
100 elmapi 8799 . . . . . . . . . 10 (𝑐 ∈ (ℚ ↑m 𝑋) → 𝑐:𝑋⟶ℚ)
101 qssre 12894 . . . . . . . . . . 11 ℚ ⊆ ℝ
102101a1i 11 . . . . . . . . . 10 (𝑐 ∈ (ℚ ↑m 𝑋) → ℚ ⊆ ℝ)
103100, 102fssd 6687 . . . . . . . . 9 (𝑐 ∈ (ℚ ↑m 𝑋) → 𝑐:𝑋⟶ℝ)
104103adantl 481 . . . . . . . 8 ((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) → 𝑐:𝑋⟶ℝ)
105104ad2antrr 726 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑐:𝑋⟶ℝ)
106 elmapi 8799 . . . . . . . . 9 (𝑑 ∈ (ℚ ↑m 𝑋) → 𝑑:𝑋⟶ℚ)
107101a1i 11 . . . . . . . . 9 (𝑑 ∈ (ℚ ↑m 𝑋) → ℚ ⊆ ℝ)
108106, 107fssd 6687 . . . . . . . 8 (𝑑 ∈ (ℚ ↑m 𝑋) → 𝑑:𝑋⟶ℝ)
109108ad2antlr 727 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑑:𝑋⟶ℝ)
1109ad3antrrr 730 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝐸 ∈ ℝ+)
11135elin2d 4164 . . . . . . . . 9 ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))
112111adantlr 715 . . . . . . . 8 (((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))
113112adantll 714 . . . . . . 7 (((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))
11470elin2d 4164 . . . . . . . . 9 ((∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
115114adantll 714 . . . . . . . 8 (((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
116115adantll 714 . . . . . . 7 (((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
11796, 97, 98, 99, 105, 109, 110, 113, 116hoiqssbllem1 46613 . . . . . 6 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)))
118 simpl 482 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → ((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)))
119 fveq2 6840 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (𝑐𝑖) = (𝑐𝑘))
120 fveq2 6840 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑘 → (𝑌𝑖) = (𝑌𝑘))
121120oveq1d 7384 . . . . . . . . . . . . . . 15 (𝑖 = 𝑘 → ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) = ((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋))))))
122121, 120oveq12d 7387 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)) = (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘)))
123122ineq2d 4179 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) = (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))))
124119, 123eleq12d 2822 . . . . . . . . . . . 12 (𝑖 = 𝑘 → ((𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ↔ (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘)))))
125124cbvralvw 3213 . . . . . . . . . . 11 (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ↔ ∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))))
126125biimpi 216 . . . . . . . . . 10 (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) → ∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))))
127126adantr 480 . . . . . . . . 9 ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → ∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))))
128 fveq2 6840 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (𝑑𝑖) = (𝑑𝑘))
129120oveq1d 7384 . . . . . . . . . . . . . . 15 (𝑖 = 𝑘 → ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) = ((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))
130120, 129oveq12d 7387 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))) = ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
131130ineq2d 4179 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) = (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))
132128, 131eleq12d 2822 . . . . . . . . . . . 12 (𝑖 = 𝑘 → ((𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) ↔ (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
133132cbvralvw 3213 . . . . . . . . . . 11 (∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) ↔ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))
134133biimpi 216 . . . . . . . . . 10 (∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) → ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))
135134adantl 481 . . . . . . . . 9 ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))
136127, 135jca 511 . . . . . . . 8 ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
137136adantl 481 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
138 nfv 1914 . . . . . . . 8 𝑖(((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
1391ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑋 ∈ Fin)
14012ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑋 ≠ ∅)
1415ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑌 ∈ (ℝ ↑m 𝑋))
142104ad2antrr 726 . . . . . . . 8 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑐:𝑋⟶ℝ)
143108ad2antlr 727 . . . . . . . 8 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑑:𝑋⟶ℝ)
1449ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝐸 ∈ ℝ+)
145125, 111sylanbr 582 . . . . . . . . . 10 ((∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))
146145adantlr 715 . . . . . . . . 9 (((∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))
147146adantll 714 . . . . . . . 8 (((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))
148133, 114sylanbr 582 . . . . . . . . . 10 ((∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
149148adantll 714 . . . . . . . . 9 (((∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
150149adantll 714 . . . . . . . 8 (((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
151138, 139, 140, 141, 142, 143, 144, 147, 150hoiqssbllem2 46614 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))
152118, 137, 151syl2anc 584 . . . . . 6 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))
153117, 152jca 511 . . . . 5 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → (𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
154153ex 412 . . . 4 (((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) → ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → (𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))))
155154reximdva 3146 . . 3 ((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) → (∃𝑑 ∈ (ℚ ↑m 𝑋)(∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → ∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))))
156155reximdva 3146 . 2 (𝜑 → (∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))))
15793, 156mpd 15 1 (𝜑 → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3444  cin 3910  wss 3911  c0 4292   class class class wbr 5102   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  m cmap 8776  Xcixp 8847  Fincfn 8895  cr 11043   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  2c2 12217  cq 12883  +crp 12927  (,)cioo 13282  [,)cico 13284  chash 14271  csqrt 15175  distcds 17205  ballcbl 21283  ℝ^crrx 25316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xadd 13049  df-ioo 13286  df-ico 13288  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-grp 18850  df-minusg 18851  df-sbg 18852  df-subg 19037  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-rhm 20392  df-subrng 20466  df-subrg 20490  df-drng 20651  df-field 20652  df-staf 20759  df-srng 20760  df-lmod 20800  df-lss 20870  df-sra 21112  df-rgmod 21113  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-cnfld 21297  df-refld 21547  df-dsmm 21674  df-frlm 21689  df-nm 24503  df-tng 24505  df-tcph 25102  df-rrx 25318
This theorem is referenced by:  hoiqssbl  46616
  Copyright terms: Public domain W3C validator