Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoiqssbllem3 Structured version   Visualization version   GIF version

Theorem hoiqssbllem3 46545
Description: A n-dimensional ball contains a nonempty half-open interval with vertices with rational components. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoiqssbllem3.x (𝜑𝑋 ∈ Fin)
hoiqssbllem3.n (𝜑𝑋 ≠ ∅)
hoiqssbllem3.y (𝜑𝑌 ∈ (ℝ ↑m 𝑋))
hoiqssbllem3.e (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
hoiqssbllem3 (𝜑 → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
Distinct variable groups:   𝐸,𝑐,𝑑,𝑖   𝑋,𝑐,𝑑,𝑖   𝑌,𝑐,𝑑,𝑖   𝜑,𝑐,𝑑,𝑖

Proof of Theorem hoiqssbllem3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 hoiqssbllem3.x . . . . . . 7 (𝜑𝑋 ∈ Fin)
2 qex 13026 . . . . . . . . 9 ℚ ∈ V
32inex1 5335 . . . . . . . 8 (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∈ V
43a1i 11 . . . . . . 7 ((𝜑𝑖𝑋) → (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∈ V)
5 hoiqssbllem3.y . . . . . . . . . . . . 13 (𝜑𝑌 ∈ (ℝ ↑m 𝑋))
6 elmapi 8907 . . . . . . . . . . . . 13 (𝑌 ∈ (ℝ ↑m 𝑋) → 𝑌:𝑋⟶ℝ)
75, 6syl 17 . . . . . . . . . . . 12 (𝜑𝑌:𝑋⟶ℝ)
87ffvelcdmda 7118 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ℝ)
9 hoiqssbllem3.e . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ+)
10 2rp 13062 . . . . . . . . . . . . . . 15 2 ∈ ℝ+
1110a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℝ+)
12 hoiqssbllem3.n . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ≠ ∅)
13 hashnncl 14415 . . . . . . . . . . . . . . . . . 18 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
141, 13syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
1512, 14mpbird 257 . . . . . . . . . . . . . . . 16 (𝜑 → (♯‘𝑋) ∈ ℕ)
16 nnrp 13068 . . . . . . . . . . . . . . . 16 ((♯‘𝑋) ∈ ℕ → (♯‘𝑋) ∈ ℝ+)
1715, 16syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘𝑋) ∈ ℝ+)
1817rpsqrtcld 15460 . . . . . . . . . . . . . 14 (𝜑 → (√‘(♯‘𝑋)) ∈ ℝ+)
1911, 18rpmulcld 13115 . . . . . . . . . . . . 13 (𝜑 → (2 · (√‘(♯‘𝑋))) ∈ ℝ+)
209, 19rpdivcld 13116 . . . . . . . . . . . 12 (𝜑 → (𝐸 / (2 · (√‘(♯‘𝑋)))) ∈ ℝ+)
2120adantr 480 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝐸 / (2 · (√‘(♯‘𝑋)))) ∈ ℝ+)
228, 21ltsubrpd 13131 . . . . . . . . . 10 ((𝜑𝑖𝑋) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) < (𝑌𝑖))
2321rpred 13099 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐸 / (2 · (√‘(♯‘𝑋)))) ∈ ℝ)
248, 23resubcld 11718 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ)
2524, 8ltnled 11437 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) < (𝑌𝑖) ↔ ¬ (𝑌𝑖) ≤ ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))))
2622, 25mpbid 232 . . . . . . . . 9 ((𝜑𝑖𝑋) → ¬ (𝑌𝑖) ≤ ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))))
2724rexrd 11340 . . . . . . . . . 10 ((𝜑𝑖𝑋) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ*)
288rexrd 11340 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ℝ*)
2927, 28qinioo 45453 . . . . . . . . 9 ((𝜑𝑖𝑋) → ((ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) = ∅ ↔ (𝑌𝑖) ≤ ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))))
3026, 29mtbird 325 . . . . . . . 8 ((𝜑𝑖𝑋) → ¬ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) = ∅)
3130neqned 2953 . . . . . . 7 ((𝜑𝑖𝑋) → (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ≠ ∅)
321, 4, 31choicefi 45107 . . . . . 6 (𝜑 → ∃𝑐(𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))))
33 simpl 482 . . . . . . . . . . . . 13 ((𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))) → 𝑐 Fn 𝑋)
34 nfra1 3290 . . . . . . . . . . . . . . 15 𝑖𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))
35 rspa 3254 . . . . . . . . . . . . . . . . 17 ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))
36 elinel1 4224 . . . . . . . . . . . . . . . . 17 ((𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) → (𝑐𝑖) ∈ ℚ)
3735, 36syl 17 . . . . . . . . . . . . . . . 16 ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ ℚ)
3837ex 412 . . . . . . . . . . . . . . 15 (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) → (𝑖𝑋 → (𝑐𝑖) ∈ ℚ))
3934, 38ralrimi 3263 . . . . . . . . . . . . . 14 (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) → ∀𝑖𝑋 (𝑐𝑖) ∈ ℚ)
4039adantl 481 . . . . . . . . . . . . 13 ((𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))) → ∀𝑖𝑋 (𝑐𝑖) ∈ ℚ)
4133, 40jca 511 . . . . . . . . . . . 12 ((𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))) → (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ ℚ))
4241adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))) → (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ ℚ))
43 ffnfv 7153 . . . . . . . . . . 11 (𝑐:𝑋⟶ℚ ↔ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ ℚ))
4442, 43sylibr 234 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))) → 𝑐:𝑋⟶ℚ)
452a1i 11 . . . . . . . . . . . 12 (𝜑 → ℚ ∈ V)
46 elmapg 8897 . . . . . . . . . . . 12 ((ℚ ∈ V ∧ 𝑋 ∈ Fin) → (𝑐 ∈ (ℚ ↑m 𝑋) ↔ 𝑐:𝑋⟶ℚ))
4745, 1, 46syl2anc 583 . . . . . . . . . . 11 (𝜑 → (𝑐 ∈ (ℚ ↑m 𝑋) ↔ 𝑐:𝑋⟶ℚ))
4847adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))) → (𝑐 ∈ (ℚ ↑m 𝑋) ↔ 𝑐:𝑋⟶ℚ))
4944, 48mpbird 257 . . . . . . . . 9 ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))) → 𝑐 ∈ (ℚ ↑m 𝑋))
50 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))) → ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))
5149, 50jca 511 . . . . . . . 8 ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))) → (𝑐 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))))
5251ex 412 . . . . . . 7 (𝜑 → ((𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))) → (𝑐 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))))
5352eximdv 1916 . . . . . 6 (𝜑 → (∃𝑐(𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))) → ∃𝑐(𝑐 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))))
5432, 53mpd 15 . . . . 5 (𝜑 → ∃𝑐(𝑐 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))))
55 df-rex 3077 . . . . 5 (∃𝑐 ∈ (ℚ ↑m 𝑋)∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ↔ ∃𝑐(𝑐 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))))
5654, 55sylibr 234 . . . 4 (𝜑 → ∃𝑐 ∈ (ℚ ↑m 𝑋)∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))))
572inex1 5335 . . . . . . . 8 (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) ∈ V
5857a1i 11 . . . . . . 7 ((𝜑𝑖𝑋) → (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) ∈ V)
598, 21ltaddrpd 13132 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝑌𝑖) < ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))
608, 23readdcld 11319 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ)
618, 60ltnled 11437 . . . . . . . . . 10 ((𝜑𝑖𝑋) → ((𝑌𝑖) < ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ↔ ¬ ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ≤ (𝑌𝑖)))
6259, 61mpbid 232 . . . . . . . . 9 ((𝜑𝑖𝑋) → ¬ ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ≤ (𝑌𝑖))
6360rexrd 11340 . . . . . . . . . 10 ((𝜑𝑖𝑋) → ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ∈ ℝ*)
6428, 63qinioo 45453 . . . . . . . . 9 ((𝜑𝑖𝑋) → ((ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) = ∅ ↔ ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) ≤ (𝑌𝑖)))
6562, 64mtbird 325 . . . . . . . 8 ((𝜑𝑖𝑋) → ¬ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) = ∅)
6665neqned 2953 . . . . . . 7 ((𝜑𝑖𝑋) → (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) ≠ ∅)
671, 58, 66choicefi 45107 . . . . . 6 (𝜑 → ∃𝑑(𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
68 simpl 482 . . . . . . . . . . . . 13 ((𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → 𝑑 Fn 𝑋)
69 nfra1 3290 . . . . . . . . . . . . . . 15 𝑖𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
70 rspa 3254 . . . . . . . . . . . . . . . . 17 ((∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))
71 elinel1 4224 . . . . . . . . . . . . . . . . 17 ((𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) → (𝑑𝑖) ∈ ℚ)
7270, 71syl 17 . . . . . . . . . . . . . . . 16 ((∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ℚ)
7372ex 412 . . . . . . . . . . . . . . 15 (∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) → (𝑖𝑋 → (𝑑𝑖) ∈ ℚ))
7469, 73ralrimi 3263 . . . . . . . . . . . . . 14 (∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) → ∀𝑖𝑋 (𝑑𝑖) ∈ ℚ)
7574adantl 481 . . . . . . . . . . . . 13 ((𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → ∀𝑖𝑋 (𝑑𝑖) ∈ ℚ)
7668, 75jca 511 . . . . . . . . . . . 12 ((𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ ℚ))
7776adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ ℚ))
78 ffnfv 7153 . . . . . . . . . . 11 (𝑑:𝑋⟶ℚ ↔ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ ℚ))
7977, 78sylibr 234 . . . . . . . . . 10 ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑑:𝑋⟶ℚ)
80 elmapg 8897 . . . . . . . . . . . 12 ((ℚ ∈ V ∧ 𝑋 ∈ Fin) → (𝑑 ∈ (ℚ ↑m 𝑋) ↔ 𝑑:𝑋⟶ℚ))
8145, 1, 80syl2anc 583 . . . . . . . . . . 11 (𝜑 → (𝑑 ∈ (ℚ ↑m 𝑋) ↔ 𝑑:𝑋⟶ℚ))
8281adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → (𝑑 ∈ (ℚ ↑m 𝑋) ↔ 𝑑:𝑋⟶ℚ))
8379, 82mpbird 257 . . . . . . . . 9 ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑑 ∈ (ℚ ↑m 𝑋))
84 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))
8583, 84jca 511 . . . . . . . 8 ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → (𝑑 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
8685ex 412 . . . . . . 7 (𝜑 → ((𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → (𝑑 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))))
8786eximdv 1916 . . . . . 6 (𝜑 → (∃𝑑(𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → ∃𝑑(𝑑 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))))
8867, 87mpd 15 . . . . 5 (𝜑 → ∃𝑑(𝑑 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
89 df-rex 3077 . . . . 5 (∃𝑑 ∈ (ℚ ↑m 𝑋)∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) ↔ ∃𝑑(𝑑 ∈ (ℚ ↑m 𝑋) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
9088, 89sylibr 234 . . . 4 (𝜑 → ∃𝑑 ∈ (ℚ ↑m 𝑋)∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))
9156, 90jca 511 . . 3 (𝜑 → (∃𝑐 ∈ (ℚ ↑m 𝑋)∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∃𝑑 ∈ (ℚ ↑m 𝑋)∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
92 reeanv 3235 . . 3 (∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) ↔ (∃𝑐 ∈ (ℚ ↑m 𝑋)∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∃𝑑 ∈ (ℚ ↑m 𝑋)∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
9391, 92sylibr 234 . 2 (𝜑 → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
94 nfv 1913 . . . . . . . 8 𝑖((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋))
9534, 69nfan 1898 . . . . . . . 8 𝑖(∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))
9694, 95nfan 1898 . . . . . . 7 𝑖(((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
971ad3antrrr 729 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑋 ∈ Fin)
9812ad3antrrr 729 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑋 ≠ ∅)
995ad3antrrr 729 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑌 ∈ (ℝ ↑m 𝑋))
100 elmapi 8907 . . . . . . . . . 10 (𝑐 ∈ (ℚ ↑m 𝑋) → 𝑐:𝑋⟶ℚ)
101 qssre 13024 . . . . . . . . . . 11 ℚ ⊆ ℝ
102101a1i 11 . . . . . . . . . 10 (𝑐 ∈ (ℚ ↑m 𝑋) → ℚ ⊆ ℝ)
103100, 102fssd 6764 . . . . . . . . 9 (𝑐 ∈ (ℚ ↑m 𝑋) → 𝑐:𝑋⟶ℝ)
104103adantl 481 . . . . . . . 8 ((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) → 𝑐:𝑋⟶ℝ)
105104ad2antrr 725 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑐:𝑋⟶ℝ)
106 elmapi 8907 . . . . . . . . 9 (𝑑 ∈ (ℚ ↑m 𝑋) → 𝑑:𝑋⟶ℚ)
107101a1i 11 . . . . . . . . 9 (𝑑 ∈ (ℚ ↑m 𝑋) → ℚ ⊆ ℝ)
108106, 107fssd 6764 . . . . . . . 8 (𝑑 ∈ (ℚ ↑m 𝑋) → 𝑑:𝑋⟶ℝ)
109108ad2antlr 726 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑑:𝑋⟶ℝ)
1109ad3antrrr 729 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝐸 ∈ ℝ+)
11135elin2d 4228 . . . . . . . . 9 ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))
112111adantlr 714 . . . . . . . 8 (((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))
113112adantll 713 . . . . . . 7 (((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))
11470elin2d 4228 . . . . . . . . 9 ((∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
115114adantll 713 . . . . . . . 8 (((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
116115adantll 713 . . . . . . 7 (((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
11796, 97, 98, 99, 105, 109, 110, 113, 116hoiqssbllem1 46543 . . . . . 6 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)))
118 simpl 482 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → ((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)))
119 fveq2 6920 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (𝑐𝑖) = (𝑐𝑘))
120 fveq2 6920 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑘 → (𝑌𝑖) = (𝑌𝑘))
121120oveq1d 7463 . . . . . . . . . . . . . . 15 (𝑖 = 𝑘 → ((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋))))) = ((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋))))))
122121, 120oveq12d 7466 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)) = (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘)))
123122ineq2d 4241 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) = (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))))
124119, 123eleq12d 2838 . . . . . . . . . . . 12 (𝑖 = 𝑘 → ((𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ↔ (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘)))))
125124cbvralvw 3243 . . . . . . . . . . 11 (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ↔ ∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))))
126125biimpi 216 . . . . . . . . . 10 (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) → ∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))))
127126adantr 480 . . . . . . . . 9 ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → ∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))))
128 fveq2 6920 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (𝑑𝑖) = (𝑑𝑘))
129120oveq1d 7463 . . . . . . . . . . . . . . 15 (𝑖 = 𝑘 → ((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))) = ((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))
130120, 129oveq12d 7466 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))) = ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
131130ineq2d 4241 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) = (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))
132128, 131eleq12d 2838 . . . . . . . . . . . 12 (𝑖 = 𝑘 → ((𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) ↔ (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
133132cbvralvw 3243 . . . . . . . . . . 11 (∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) ↔ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))
134133biimpi 216 . . . . . . . . . 10 (∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) → ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))
135134adantl 481 . . . . . . . . 9 ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))
136127, 135jca 511 . . . . . . . 8 ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
137136adantl 481 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
138 nfv 1913 . . . . . . . 8 𝑖(((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))))
1391ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑋 ∈ Fin)
14012ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑋 ≠ ∅)
1415ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑌 ∈ (ℝ ↑m 𝑋))
142104ad2antrr 725 . . . . . . . 8 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑐:𝑋⟶ℝ)
143108ad2antlr 726 . . . . . . . 8 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝑑:𝑋⟶ℝ)
1449ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → 𝐸 ∈ ℝ+)
145125, 111sylanbr 581 . . . . . . . . . 10 ((∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))
146145adantlr 714 . . . . . . . . 9 (((∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))
147146adantll 713 . . . . . . . 8 (((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖)))
148133, 114sylanbr 581 . . . . . . . . . 10 ((∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
149148adantll 713 . . . . . . . . 9 (((∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
150149adantll 713 . . . . . . . 8 (((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))
151138, 139, 140, 141, 142, 143, 144, 147, 150hoiqssbllem2 46544 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))
152118, 137, 151syl2anc 583 . . . . . 6 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))
153117, 152jca 511 . . . . 5 ((((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋))))))))) → (𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
154153ex 412 . . . 4 (((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) ∧ 𝑑 ∈ (ℚ ↑m 𝑋)) → ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → (𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))))
155154reximdva 3174 . . 3 ((𝜑𝑐 ∈ (ℚ ↑m 𝑋)) → (∃𝑑 ∈ (ℚ ↑m 𝑋)(∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → ∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))))
156155reximdva 3174 . 2 (𝜑 → (∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(♯‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(♯‘𝑋)))))))) → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))))
15793, 156mpd 15 1 (𝜑 → ∃𝑐 ∈ (ℚ ↑m 𝑋)∃𝑑 ∈ (ℚ ↑m 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cin 3975  wss 3976  c0 4352   class class class wbr 5166   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  Xcixp 8955  Fincfn 9003  cr 11183   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  cq 13013  +crp 13057  (,)cioo 13407  [,)cico 13409  chash 14379  csqrt 15282  distcds 17320  ballcbl 21374  ℝ^crrx 25436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xadd 13176  df-ioo 13411  df-ico 13413  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-drng 20753  df-field 20754  df-staf 20862  df-srng 20863  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-cnfld 21388  df-refld 21646  df-dsmm 21775  df-frlm 21790  df-nm 24616  df-tng 24618  df-tcph 25222  df-rrx 25438
This theorem is referenced by:  hoiqssbl  46546
  Copyright terms: Public domain W3C validator