Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > nmcfnlb | Structured version Visualization version GIF version |
Description: A lower bound of the norm of a continuous linear Hilbert space functional. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmcfnlb | ⊢ ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3899 | . . 3 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) ↔ (𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn)) | |
2 | fveq1 6755 | . . . . . . . 8 ⊢ (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → (𝑇‘𝐴) = (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝐴)) | |
3 | 2 | fveq2d 6760 | . . . . . . 7 ⊢ (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → (abs‘(𝑇‘𝐴)) = (abs‘(if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝐴))) |
4 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → (normfn‘𝑇) = (normfn‘if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})))) | |
5 | 4 | oveq1d 7270 | . . . . . . 7 ⊢ (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → ((normfn‘𝑇) · (normℎ‘𝐴)) = ((normfn‘if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))) · (normℎ‘𝐴))) |
6 | 3, 5 | breq12d 5083 | . . . . . 6 ⊢ (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → ((abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴)) ↔ (abs‘(if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝐴)) ≤ ((normfn‘if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))) · (normℎ‘𝐴)))) |
7 | 6 | imbi2d 340 | . . . . 5 ⊢ (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → ((𝐴 ∈ ℋ → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) ↔ (𝐴 ∈ ℋ → (abs‘(if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝐴)) ≤ ((normfn‘if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))) · (normℎ‘𝐴))))) |
8 | 0lnfn 30248 | . . . . . . . . . 10 ⊢ ( ℋ × {0}) ∈ LinFn | |
9 | 0cnfn 30243 | . . . . . . . . . 10 ⊢ ( ℋ × {0}) ∈ ContFn | |
10 | elin 3899 | . . . . . . . . . 10 ⊢ (( ℋ × {0}) ∈ (LinFn ∩ ContFn) ↔ (( ℋ × {0}) ∈ LinFn ∧ ( ℋ × {0}) ∈ ContFn)) | |
11 | 8, 9, 10 | mpbir2an 707 | . . . . . . . . 9 ⊢ ( ℋ × {0}) ∈ (LinFn ∩ ContFn) |
12 | 11 | elimel 4525 | . . . . . . . 8 ⊢ if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ (LinFn ∩ ContFn) |
13 | elin 3899 | . . . . . . . 8 ⊢ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ (LinFn ∩ ContFn) ↔ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ LinFn ∧ if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ ContFn)) | |
14 | 12, 13 | mpbi 229 | . . . . . . 7 ⊢ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ LinFn ∧ if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ ContFn) |
15 | 14 | simpli 483 | . . . . . 6 ⊢ if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ LinFn |
16 | 14 | simpri 485 | . . . . . 6 ⊢ if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ ContFn |
17 | 15, 16 | nmcfnlbi 30315 | . . . . 5 ⊢ (𝐴 ∈ ℋ → (abs‘(if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝐴)) ≤ ((normfn‘if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))) · (normℎ‘𝐴))) |
18 | 7, 17 | dedth 4514 | . . . 4 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (𝐴 ∈ ℋ → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴)))) |
19 | 18 | imp 406 | . . 3 ⊢ ((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) |
20 | 1, 19 | sylanbr 581 | . 2 ⊢ (((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn) ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) |
21 | 20 | 3impa 1108 | 1 ⊢ ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 ifcif 4456 {csn 4558 class class class wbr 5070 × cxp 5578 ‘cfv 6418 (class class class)co 7255 0cc0 10802 · cmul 10807 ≤ cle 10941 abscabs 14873 ℋchba 29182 normℎcno 29186 normfncnmf 29214 ContFnccnfn 29216 LinFnclf 29217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-hilex 29262 ax-hfvadd 29263 ax-hv0cl 29266 ax-hvaddid 29267 ax-hfvmul 29268 ax-hvmulid 29269 ax-hvmulass 29270 ax-hvmul0 29273 ax-hfi 29342 ax-his1 29345 ax-his3 29347 ax-his4 29348 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-hnorm 29231 df-hvsub 29234 df-nmfn 30108 df-cnfn 30110 df-lnfn 30111 |
This theorem is referenced by: lnfnconi 30318 |
Copyright terms: Public domain | W3C validator |