![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > nmcfnlb | Structured version Visualization version GIF version |
Description: A lower bound of the norm of a continuous linear Hilbert space functional. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmcfnlb | ⊢ ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3960 | . . 3 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) ↔ (𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn)) | |
2 | fveq1 6895 | . . . . . . . 8 ⊢ (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → (𝑇‘𝐴) = (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝐴)) | |
3 | 2 | fveq2d 6900 | . . . . . . 7 ⊢ (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → (abs‘(𝑇‘𝐴)) = (abs‘(if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝐴))) |
4 | fveq2 6896 | . . . . . . . 8 ⊢ (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → (normfn‘𝑇) = (normfn‘if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})))) | |
5 | 4 | oveq1d 7434 | . . . . . . 7 ⊢ (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → ((normfn‘𝑇) · (normℎ‘𝐴)) = ((normfn‘if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))) · (normℎ‘𝐴))) |
6 | 3, 5 | breq12d 5162 | . . . . . 6 ⊢ (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → ((abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴)) ↔ (abs‘(if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝐴)) ≤ ((normfn‘if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))) · (normℎ‘𝐴)))) |
7 | 6 | imbi2d 339 | . . . . 5 ⊢ (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → ((𝐴 ∈ ℋ → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) ↔ (𝐴 ∈ ℋ → (abs‘(if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝐴)) ≤ ((normfn‘if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))) · (normℎ‘𝐴))))) |
8 | 0lnfn 31867 | . . . . . . . . . 10 ⊢ ( ℋ × {0}) ∈ LinFn | |
9 | 0cnfn 31862 | . . . . . . . . . 10 ⊢ ( ℋ × {0}) ∈ ContFn | |
10 | elin 3960 | . . . . . . . . . 10 ⊢ (( ℋ × {0}) ∈ (LinFn ∩ ContFn) ↔ (( ℋ × {0}) ∈ LinFn ∧ ( ℋ × {0}) ∈ ContFn)) | |
11 | 8, 9, 10 | mpbir2an 709 | . . . . . . . . 9 ⊢ ( ℋ × {0}) ∈ (LinFn ∩ ContFn) |
12 | 11 | elimel 4599 | . . . . . . . 8 ⊢ if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ (LinFn ∩ ContFn) |
13 | elin 3960 | . . . . . . . 8 ⊢ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ (LinFn ∩ ContFn) ↔ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ LinFn ∧ if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ ContFn)) | |
14 | 12, 13 | mpbi 229 | . . . . . . 7 ⊢ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ LinFn ∧ if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ ContFn) |
15 | 14 | simpli 482 | . . . . . 6 ⊢ if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ LinFn |
16 | 14 | simpri 484 | . . . . . 6 ⊢ if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ ContFn |
17 | 15, 16 | nmcfnlbi 31934 | . . . . 5 ⊢ (𝐴 ∈ ℋ → (abs‘(if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝐴)) ≤ ((normfn‘if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))) · (normℎ‘𝐴))) |
18 | 7, 17 | dedth 4588 | . . . 4 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (𝐴 ∈ ℋ → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴)))) |
19 | 18 | imp 405 | . . 3 ⊢ ((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) |
20 | 1, 19 | sylanbr 580 | . 2 ⊢ (((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn) ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) |
21 | 20 | 3impa 1107 | 1 ⊢ ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∩ cin 3943 ifcif 4530 {csn 4630 class class class wbr 5149 × cxp 5676 ‘cfv 6549 (class class class)co 7419 0cc0 11140 · cmul 11145 ≤ cle 11281 abscabs 15217 ℋchba 30801 normℎcno 30805 normfncnmf 30833 ContFnccnfn 30835 LinFnclf 30836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 ax-hilex 30881 ax-hfvadd 30882 ax-hv0cl 30885 ax-hvaddid 30886 ax-hfvmul 30887 ax-hvmulid 30888 ax-hvmulass 30889 ax-hvmul0 30892 ax-hfi 30961 ax-his1 30964 ax-his3 30966 ax-his4 30967 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9467 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-n0 12506 df-z 12592 df-uz 12856 df-rp 13010 df-seq 14003 df-exp 14063 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-hnorm 30850 df-hvsub 30853 df-nmfn 31727 df-cnfn 31729 df-lnfn 31730 |
This theorem is referenced by: lnfnconi 31937 |
Copyright terms: Public domain | W3C validator |