HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcfnlb Structured version   Visualization version   GIF version

Theorem nmcfnlb 30416
Description: A lower bound of the norm of a continuous linear Hilbert space functional. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmcfnlb ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))

Proof of Theorem nmcfnlb
StepHypRef Expression
1 elin 3903 . . 3 (𝑇 ∈ (LinFn ∩ ContFn) ↔ (𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn))
2 fveq1 6773 . . . . . . . 8 (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → (𝑇𝐴) = (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝐴))
32fveq2d 6778 . . . . . . 7 (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → (abs‘(𝑇𝐴)) = (abs‘(if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝐴)))
4 fveq2 6774 . . . . . . . 8 (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → (normfn𝑇) = (normfn‘if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))))
54oveq1d 7290 . . . . . . 7 (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → ((normfn𝑇) · (norm𝐴)) = ((normfn‘if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))) · (norm𝐴)))
63, 5breq12d 5087 . . . . . 6 (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → ((abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)) ↔ (abs‘(if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝐴)) ≤ ((normfn‘if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))) · (norm𝐴))))
76imbi2d 341 . . . . 5 (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → ((𝐴 ∈ ℋ → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴))) ↔ (𝐴 ∈ ℋ → (abs‘(if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝐴)) ≤ ((normfn‘if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))) · (norm𝐴)))))
8 0lnfn 30347 . . . . . . . . . 10 ( ℋ × {0}) ∈ LinFn
9 0cnfn 30342 . . . . . . . . . 10 ( ℋ × {0}) ∈ ContFn
10 elin 3903 . . . . . . . . . 10 (( ℋ × {0}) ∈ (LinFn ∩ ContFn) ↔ (( ℋ × {0}) ∈ LinFn ∧ ( ℋ × {0}) ∈ ContFn))
118, 9, 10mpbir2an 708 . . . . . . . . 9 ( ℋ × {0}) ∈ (LinFn ∩ ContFn)
1211elimel 4528 . . . . . . . 8 if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ (LinFn ∩ ContFn)
13 elin 3903 . . . . . . . 8 (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ (LinFn ∩ ContFn) ↔ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ LinFn ∧ if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ ContFn))
1412, 13mpbi 229 . . . . . . 7 (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ LinFn ∧ if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ ContFn)
1514simpli 484 . . . . . 6 if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ LinFn
1614simpri 486 . . . . . 6 if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ ContFn
1715, 16nmcfnlbi 30414 . . . . 5 (𝐴 ∈ ℋ → (abs‘(if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝐴)) ≤ ((normfn‘if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))) · (norm𝐴)))
187, 17dedth 4517 . . . 4 (𝑇 ∈ (LinFn ∩ ContFn) → (𝐴 ∈ ℋ → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴))))
1918imp 407 . . 3 ((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
201, 19sylanbr 582 . 2 (((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn) ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
21203impa 1109 1 ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cin 3886  ifcif 4459  {csn 4561   class class class wbr 5074   × cxp 5587  cfv 6433  (class class class)co 7275  0cc0 10871   · cmul 10876  cle 11010  abscabs 14945  chba 29281  normcno 29285  normfncnmf 29313  ContFnccnfn 29315  LinFnclf 29316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-hilex 29361  ax-hfvadd 29362  ax-hv0cl 29365  ax-hvaddid 29366  ax-hfvmul 29367  ax-hvmulid 29368  ax-hvmulass 29369  ax-hvmul0 29372  ax-hfi 29441  ax-his1 29444  ax-his3 29446  ax-his4 29447
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-hnorm 29330  df-hvsub 29333  df-nmfn 30207  df-cnfn 30209  df-lnfn 30210
This theorem is referenced by:  lnfnconi  30417
  Copyright terms: Public domain W3C validator