![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > nmcfnlb | Structured version Visualization version GIF version |
Description: A lower bound of the norm of a continuous linear Hilbert space functional. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmcfnlb | ⊢ ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3992 | . . 3 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) ↔ (𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn)) | |
2 | fveq1 6919 | . . . . . . . 8 ⊢ (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → (𝑇‘𝐴) = (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝐴)) | |
3 | 2 | fveq2d 6924 | . . . . . . 7 ⊢ (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → (abs‘(𝑇‘𝐴)) = (abs‘(if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝐴))) |
4 | fveq2 6920 | . . . . . . . 8 ⊢ (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → (normfn‘𝑇) = (normfn‘if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})))) | |
5 | 4 | oveq1d 7463 | . . . . . . 7 ⊢ (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → ((normfn‘𝑇) · (normℎ‘𝐴)) = ((normfn‘if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))) · (normℎ‘𝐴))) |
6 | 3, 5 | breq12d 5179 | . . . . . 6 ⊢ (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → ((abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴)) ↔ (abs‘(if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝐴)) ≤ ((normfn‘if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))) · (normℎ‘𝐴)))) |
7 | 6 | imbi2d 340 | . . . . 5 ⊢ (𝑇 = if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) → ((𝐴 ∈ ℋ → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) ↔ (𝐴 ∈ ℋ → (abs‘(if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝐴)) ≤ ((normfn‘if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))) · (normℎ‘𝐴))))) |
8 | 0lnfn 32017 | . . . . . . . . . 10 ⊢ ( ℋ × {0}) ∈ LinFn | |
9 | 0cnfn 32012 | . . . . . . . . . 10 ⊢ ( ℋ × {0}) ∈ ContFn | |
10 | elin 3992 | . . . . . . . . . 10 ⊢ (( ℋ × {0}) ∈ (LinFn ∩ ContFn) ↔ (( ℋ × {0}) ∈ LinFn ∧ ( ℋ × {0}) ∈ ContFn)) | |
11 | 8, 9, 10 | mpbir2an 710 | . . . . . . . . 9 ⊢ ( ℋ × {0}) ∈ (LinFn ∩ ContFn) |
12 | 11 | elimel 4617 | . . . . . . . 8 ⊢ if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ (LinFn ∩ ContFn) |
13 | elin 3992 | . . . . . . . 8 ⊢ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ (LinFn ∩ ContFn) ↔ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ LinFn ∧ if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ ContFn)) | |
14 | 12, 13 | mpbi 230 | . . . . . . 7 ⊢ (if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ LinFn ∧ if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ ContFn) |
15 | 14 | simpli 483 | . . . . . 6 ⊢ if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ LinFn |
16 | 14 | simpri 485 | . . . . . 6 ⊢ if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0})) ∈ ContFn |
17 | 15, 16 | nmcfnlbi 32084 | . . . . 5 ⊢ (𝐴 ∈ ℋ → (abs‘(if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))‘𝐴)) ≤ ((normfn‘if(𝑇 ∈ (LinFn ∩ ContFn), 𝑇, ( ℋ × {0}))) · (normℎ‘𝐴))) |
18 | 7, 17 | dedth 4606 | . . . 4 ⊢ (𝑇 ∈ (LinFn ∩ ContFn) → (𝐴 ∈ ℋ → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴)))) |
19 | 18 | imp 406 | . . 3 ⊢ ((𝑇 ∈ (LinFn ∩ ContFn) ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) |
20 | 1, 19 | sylanbr 581 | . 2 ⊢ (((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn) ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) |
21 | 20 | 3impa 1110 | 1 ⊢ ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ∧ 𝐴 ∈ ℋ) → (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) · (normℎ‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ifcif 4548 {csn 4648 class class class wbr 5166 × cxp 5698 ‘cfv 6573 (class class class)co 7448 0cc0 11184 · cmul 11189 ≤ cle 11325 abscabs 15283 ℋchba 30951 normℎcno 30955 normfncnmf 30983 ContFnccnfn 30985 LinFnclf 30986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-hilex 31031 ax-hfvadd 31032 ax-hv0cl 31035 ax-hvaddid 31036 ax-hfvmul 31037 ax-hvmulid 31038 ax-hvmulass 31039 ax-hvmul0 31042 ax-hfi 31111 ax-his1 31114 ax-his3 31116 ax-his4 31117 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-hnorm 31000 df-hvsub 31003 df-nmfn 31877 df-cnfn 31879 df-lnfn 31880 |
This theorem is referenced by: lnfnconi 32087 |
Copyright terms: Public domain | W3C validator |