MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem19 Structured version   Visualization version   GIF version

Theorem 4sqlem19 16983
Description: Lemma for 4sq 16984. The proof is by strong induction - we show that if all the integers less than 𝑘 are in 𝑆, then 𝑘 is as well. In this part of the proof we do the induction argument and dispense with all the cases except the odd prime case, which is sent to 4sqlem18 16982. If 𝑘 is 0, 1, 2, we show 𝑘𝑆 directly; otherwise if 𝑘 is composite, 𝑘 is the product of two numbers less than it (and hence in 𝑆 by assumption), so by mul4sq 16974 𝑘𝑆. (Contributed by Mario Carneiro, 14-Jul-2014.) (Revised by Mario Carneiro, 20-Jun-2015.)
Hypothesis
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
Assertion
Ref Expression
4sqlem19 0 = 𝑆
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧   𝑆,𝑛
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem 4sqlem19
Dummy variables 𝑗 𝑘 𝑖 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 12503 . . . 4 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
2 eleq1 2822 . . . . . 6 (𝑗 = 1 → (𝑗𝑆 ↔ 1 ∈ 𝑆))
3 eleq1 2822 . . . . . 6 (𝑗 = 𝑚 → (𝑗𝑆𝑚𝑆))
4 eleq1 2822 . . . . . 6 (𝑗 = 𝑖 → (𝑗𝑆𝑖𝑆))
5 eleq1 2822 . . . . . 6 (𝑗 = (𝑚 · 𝑖) → (𝑗𝑆 ↔ (𝑚 · 𝑖) ∈ 𝑆))
6 eleq1 2822 . . . . . 6 (𝑗 = 𝑘 → (𝑗𝑆𝑘𝑆))
7 abs1 15316 . . . . . . . . . . 11 (abs‘1) = 1
87oveq1i 7415 . . . . . . . . . 10 ((abs‘1)↑2) = (1↑2)
9 sq1 14213 . . . . . . . . . 10 (1↑2) = 1
108, 9eqtri 2758 . . . . . . . . 9 ((abs‘1)↑2) = 1
11 abs0 15304 . . . . . . . . . . 11 (abs‘0) = 0
1211oveq1i 7415 . . . . . . . . . 10 ((abs‘0)↑2) = (0↑2)
13 sq0 14210 . . . . . . . . . 10 (0↑2) = 0
1412, 13eqtri 2758 . . . . . . . . 9 ((abs‘0)↑2) = 0
1510, 14oveq12i 7417 . . . . . . . 8 (((abs‘1)↑2) + ((abs‘0)↑2)) = (1 + 0)
16 1p0e1 12364 . . . . . . . 8 (1 + 0) = 1
1715, 16eqtri 2758 . . . . . . 7 (((abs‘1)↑2) + ((abs‘0)↑2)) = 1
18 1z 12622 . . . . . . . . 9 1 ∈ ℤ
19 zgz 16953 . . . . . . . . 9 (1 ∈ ℤ → 1 ∈ ℤ[i])
2018, 19ax-mp 5 . . . . . . . 8 1 ∈ ℤ[i]
21 0z 12599 . . . . . . . . 9 0 ∈ ℤ
22 zgz 16953 . . . . . . . . 9 (0 ∈ ℤ → 0 ∈ ℤ[i])
2321, 22ax-mp 5 . . . . . . . 8 0 ∈ ℤ[i]
24 4sq.1 . . . . . . . . 9 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
25244sqlem4a 16971 . . . . . . . 8 ((1 ∈ ℤ[i] ∧ 0 ∈ ℤ[i]) → (((abs‘1)↑2) + ((abs‘0)↑2)) ∈ 𝑆)
2620, 23, 25mp2an 692 . . . . . . 7 (((abs‘1)↑2) + ((abs‘0)↑2)) ∈ 𝑆
2717, 26eqeltrri 2831 . . . . . 6 1 ∈ 𝑆
28 eleq1 2822 . . . . . . 7 (𝑗 = 2 → (𝑗𝑆 ↔ 2 ∈ 𝑆))
29 eldifsn 4762 . . . . . . . . 9 (𝑗 ∈ (ℙ ∖ {2}) ↔ (𝑗 ∈ ℙ ∧ 𝑗 ≠ 2))
30 oddprm 16830 . . . . . . . . . . 11 (𝑗 ∈ (ℙ ∖ {2}) → ((𝑗 − 1) / 2) ∈ ℕ)
3130adantr 480 . . . . . . . . . 10 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → ((𝑗 − 1) / 2) ∈ ℕ)
32 eldifi 4106 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℙ ∖ {2}) → 𝑗 ∈ ℙ)
3332adantr 480 . . . . . . . . . . . . . . 15 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗 ∈ ℙ)
34 prmnn 16693 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℙ → 𝑗 ∈ ℕ)
35 nncn 12248 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
3633, 34, 353syl 18 . . . . . . . . . . . . . 14 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗 ∈ ℂ)
37 ax-1cn 11187 . . . . . . . . . . . . . 14 1 ∈ ℂ
38 subcl 11481 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑗 − 1) ∈ ℂ)
3936, 37, 38sylancl 586 . . . . . . . . . . . . 13 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (𝑗 − 1) ∈ ℂ)
40 2cnd 12318 . . . . . . . . . . . . 13 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 2 ∈ ℂ)
41 2ne0 12344 . . . . . . . . . . . . . 14 2 ≠ 0
4241a1i 11 . . . . . . . . . . . . 13 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 2 ≠ 0)
4339, 40, 42divcan2d 12019 . . . . . . . . . . . 12 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (2 · ((𝑗 − 1) / 2)) = (𝑗 − 1))
4443oveq1d 7420 . . . . . . . . . . 11 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → ((2 · ((𝑗 − 1) / 2)) + 1) = ((𝑗 − 1) + 1))
45 npcan 11491 . . . . . . . . . . . 12 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑗 − 1) + 1) = 𝑗)
4636, 37, 45sylancl 586 . . . . . . . . . . 11 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → ((𝑗 − 1) + 1) = 𝑗)
4744, 46eqtr2d 2771 . . . . . . . . . 10 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗 = ((2 · ((𝑗 − 1) / 2)) + 1))
4843oveq2d 7421 . . . . . . . . . . . 12 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (0...(2 · ((𝑗 − 1) / 2))) = (0...(𝑗 − 1)))
49 nnm1nn0 12542 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → (𝑗 − 1) ∈ ℕ0)
5033, 34, 493syl 18 . . . . . . . . . . . . . 14 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (𝑗 − 1) ∈ ℕ0)
51 elnn0uz 12897 . . . . . . . . . . . . . 14 ((𝑗 − 1) ∈ ℕ0 ↔ (𝑗 − 1) ∈ (ℤ‘0))
5250, 51sylib 218 . . . . . . . . . . . . 13 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (𝑗 − 1) ∈ (ℤ‘0))
53 eluzfz1 13548 . . . . . . . . . . . . 13 ((𝑗 − 1) ∈ (ℤ‘0) → 0 ∈ (0...(𝑗 − 1)))
54 fzsplit 13567 . . . . . . . . . . . . 13 (0 ∈ (0...(𝑗 − 1)) → (0...(𝑗 − 1)) = ((0...0) ∪ ((0 + 1)...(𝑗 − 1))))
5552, 53, 543syl 18 . . . . . . . . . . . 12 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (0...(𝑗 − 1)) = ((0...0) ∪ ((0 + 1)...(𝑗 − 1))))
5648, 55eqtrd 2770 . . . . . . . . . . 11 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (0...(2 · ((𝑗 − 1) / 2))) = ((0...0) ∪ ((0 + 1)...(𝑗 − 1))))
57 fz0sn 13644 . . . . . . . . . . . . . 14 (0...0) = {0}
5814, 14oveq12i 7417 . . . . . . . . . . . . . . . . 17 (((abs‘0)↑2) + ((abs‘0)↑2)) = (0 + 0)
59 00id 11410 . . . . . . . . . . . . . . . . 17 (0 + 0) = 0
6058, 59eqtri 2758 . . . . . . . . . . . . . . . 16 (((abs‘0)↑2) + ((abs‘0)↑2)) = 0
61244sqlem4a 16971 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℤ[i] ∧ 0 ∈ ℤ[i]) → (((abs‘0)↑2) + ((abs‘0)↑2)) ∈ 𝑆)
6223, 23, 61mp2an 692 . . . . . . . . . . . . . . . 16 (((abs‘0)↑2) + ((abs‘0)↑2)) ∈ 𝑆
6360, 62eqeltrri 2831 . . . . . . . . . . . . . . 15 0 ∈ 𝑆
64 snssi 4784 . . . . . . . . . . . . . . 15 (0 ∈ 𝑆 → {0} ⊆ 𝑆)
6563, 64ax-mp 5 . . . . . . . . . . . . . 14 {0} ⊆ 𝑆
6657, 65eqsstri 4005 . . . . . . . . . . . . 13 (0...0) ⊆ 𝑆
6766a1i 11 . . . . . . . . . . . 12 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (0...0) ⊆ 𝑆)
68 0p1e1 12362 . . . . . . . . . . . . . 14 (0 + 1) = 1
6968oveq1i 7415 . . . . . . . . . . . . 13 ((0 + 1)...(𝑗 − 1)) = (1...(𝑗 − 1))
70 simpr 484 . . . . . . . . . . . . . 14 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆)
71 dfss3 3947 . . . . . . . . . . . . . 14 ((1...(𝑗 − 1)) ⊆ 𝑆 ↔ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆)
7270, 71sylibr 234 . . . . . . . . . . . . 13 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (1...(𝑗 − 1)) ⊆ 𝑆)
7369, 72eqsstrid 3997 . . . . . . . . . . . 12 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → ((0 + 1)...(𝑗 − 1)) ⊆ 𝑆)
7467, 73unssd 4167 . . . . . . . . . . 11 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → ((0...0) ∪ ((0 + 1)...(𝑗 − 1))) ⊆ 𝑆)
7556, 74eqsstrd 3993 . . . . . . . . . 10 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (0...(2 · ((𝑗 − 1) / 2))) ⊆ 𝑆)
76 oveq1 7412 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (𝑘 · 𝑗) = (𝑖 · 𝑗))
7776eleq1d 2819 . . . . . . . . . . 11 (𝑘 = 𝑖 → ((𝑘 · 𝑗) ∈ 𝑆 ↔ (𝑖 · 𝑗) ∈ 𝑆))
7877cbvrabv 3426 . . . . . . . . . 10 {𝑘 ∈ ℕ ∣ (𝑘 · 𝑗) ∈ 𝑆} = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑗) ∈ 𝑆}
79 eqid 2735 . . . . . . . . . 10 inf({𝑘 ∈ ℕ ∣ (𝑘 · 𝑗) ∈ 𝑆}, ℝ, < ) = inf({𝑘 ∈ ℕ ∣ (𝑘 · 𝑗) ∈ 𝑆}, ℝ, < )
8024, 31, 47, 33, 75, 78, 794sqlem18 16982 . . . . . . . . 9 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗𝑆)
8129, 80sylanbr 582 . . . . . . . 8 (((𝑗 ∈ ℙ ∧ 𝑗 ≠ 2) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗𝑆)
8281an32s 652 . . . . . . 7 (((𝑗 ∈ ℙ ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) ∧ 𝑗 ≠ 2) → 𝑗𝑆)
8310, 10oveq12i 7417 . . . . . . . . . 10 (((abs‘1)↑2) + ((abs‘1)↑2)) = (1 + 1)
84 df-2 12303 . . . . . . . . . 10 2 = (1 + 1)
8583, 84eqtr4i 2761 . . . . . . . . 9 (((abs‘1)↑2) + ((abs‘1)↑2)) = 2
86244sqlem4a 16971 . . . . . . . . . 10 ((1 ∈ ℤ[i] ∧ 1 ∈ ℤ[i]) → (((abs‘1)↑2) + ((abs‘1)↑2)) ∈ 𝑆)
8720, 20, 86mp2an 692 . . . . . . . . 9 (((abs‘1)↑2) + ((abs‘1)↑2)) ∈ 𝑆
8885, 87eqeltrri 2831 . . . . . . . 8 2 ∈ 𝑆
8988a1i 11 . . . . . . 7 ((𝑗 ∈ ℙ ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 2 ∈ 𝑆)
9028, 82, 89pm2.61ne 3017 . . . . . 6 ((𝑗 ∈ ℙ ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗𝑆)
9124mul4sq 16974 . . . . . . 7 ((𝑚𝑆𝑖𝑆) → (𝑚 · 𝑖) ∈ 𝑆)
9291a1i 11 . . . . . 6 ((𝑚 ∈ (ℤ‘2) ∧ 𝑖 ∈ (ℤ‘2)) → ((𝑚𝑆𝑖𝑆) → (𝑚 · 𝑖) ∈ 𝑆))
932, 3, 4, 5, 6, 27, 90, 92prmind2 16704 . . . . 5 (𝑘 ∈ ℕ → 𝑘𝑆)
94 id 22 . . . . . 6 (𝑘 = 0 → 𝑘 = 0)
9594, 63eqeltrdi 2842 . . . . 5 (𝑘 = 0 → 𝑘𝑆)
9693, 95jaoi 857 . . . 4 ((𝑘 ∈ ℕ ∨ 𝑘 = 0) → 𝑘𝑆)
971, 96sylbi 217 . . 3 (𝑘 ∈ ℕ0𝑘𝑆)
9897ssriv 3962 . 2 0𝑆
99244sqlem1 16968 . 2 𝑆 ⊆ ℕ0
10098, 99eqssi 3975 1 0 = 𝑆
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108  {cab 2713  wne 2932  wral 3051  wrex 3060  {crab 3415  cdif 3923  cun 3924  wss 3926  {csn 4601  cfv 6531  (class class class)co 7405  infcinf 9453  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134   < clt 11269  cmin 11466   / cdiv 11894  cn 12240  2c2 12295  0cn0 12501  cz 12588  cuz 12852  ...cfz 13524  cexp 14079  abscabs 15253  cprime 16690  ℤ[i]cgz 16949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-dvds 16273  df-gcd 16514  df-prm 16691  df-gz 16950
This theorem is referenced by:  4sq  16984
  Copyright terms: Public domain W3C validator