MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem19 Structured version   Visualization version   GIF version

Theorem 4sqlem19 16287
Description: Lemma for 4sq 16288. The proof is by strong induction - we show that if all the integers less than 𝑘 are in 𝑆, then 𝑘 is as well. In this part of the proof we do the induction argument and dispense with all the cases except the odd prime case, which is sent to 4sqlem18 16286. If 𝑘 is 0, 1, 2, we show 𝑘𝑆 directly; otherwise if 𝑘 is composite, 𝑘 is the product of two numbers less than it (and hence in 𝑆 by assumption), so by mul4sq 16278 𝑘𝑆. (Contributed by Mario Carneiro, 14-Jul-2014.) (Revised by Mario Carneiro, 20-Jun-2015.)
Hypothesis
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
Assertion
Ref Expression
4sqlem19 0 = 𝑆
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧   𝑆,𝑛
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem 4sqlem19
Dummy variables 𝑗 𝑘 𝑖 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 11887 . . . 4 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
2 eleq1 2897 . . . . . 6 (𝑗 = 1 → (𝑗𝑆 ↔ 1 ∈ 𝑆))
3 eleq1 2897 . . . . . 6 (𝑗 = 𝑚 → (𝑗𝑆𝑚𝑆))
4 eleq1 2897 . . . . . 6 (𝑗 = 𝑖 → (𝑗𝑆𝑖𝑆))
5 eleq1 2897 . . . . . 6 (𝑗 = (𝑚 · 𝑖) → (𝑗𝑆 ↔ (𝑚 · 𝑖) ∈ 𝑆))
6 eleq1 2897 . . . . . 6 (𝑗 = 𝑘 → (𝑗𝑆𝑘𝑆))
7 abs1 14645 . . . . . . . . . . 11 (abs‘1) = 1
87oveq1i 7155 . . . . . . . . . 10 ((abs‘1)↑2) = (1↑2)
9 sq1 13546 . . . . . . . . . 10 (1↑2) = 1
108, 9eqtri 2841 . . . . . . . . 9 ((abs‘1)↑2) = 1
11 abs0 14633 . . . . . . . . . . 11 (abs‘0) = 0
1211oveq1i 7155 . . . . . . . . . 10 ((abs‘0)↑2) = (0↑2)
13 sq0 13543 . . . . . . . . . 10 (0↑2) = 0
1412, 13eqtri 2841 . . . . . . . . 9 ((abs‘0)↑2) = 0
1510, 14oveq12i 7157 . . . . . . . 8 (((abs‘1)↑2) + ((abs‘0)↑2)) = (1 + 0)
16 1p0e1 11749 . . . . . . . 8 (1 + 0) = 1
1715, 16eqtri 2841 . . . . . . 7 (((abs‘1)↑2) + ((abs‘0)↑2)) = 1
18 1z 12000 . . . . . . . . 9 1 ∈ ℤ
19 zgz 16257 . . . . . . . . 9 (1 ∈ ℤ → 1 ∈ ℤ[i])
2018, 19ax-mp 5 . . . . . . . 8 1 ∈ ℤ[i]
21 0z 11980 . . . . . . . . 9 0 ∈ ℤ
22 zgz 16257 . . . . . . . . 9 (0 ∈ ℤ → 0 ∈ ℤ[i])
2321, 22ax-mp 5 . . . . . . . 8 0 ∈ ℤ[i]
24 4sq.1 . . . . . . . . 9 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
25244sqlem4a 16275 . . . . . . . 8 ((1 ∈ ℤ[i] ∧ 0 ∈ ℤ[i]) → (((abs‘1)↑2) + ((abs‘0)↑2)) ∈ 𝑆)
2620, 23, 25mp2an 688 . . . . . . 7 (((abs‘1)↑2) + ((abs‘0)↑2)) ∈ 𝑆
2717, 26eqeltrri 2907 . . . . . 6 1 ∈ 𝑆
28 eleq1 2897 . . . . . . 7 (𝑗 = 2 → (𝑗𝑆 ↔ 2 ∈ 𝑆))
29 eldifsn 4711 . . . . . . . . 9 (𝑗 ∈ (ℙ ∖ {2}) ↔ (𝑗 ∈ ℙ ∧ 𝑗 ≠ 2))
30 oddprm 16135 . . . . . . . . . . 11 (𝑗 ∈ (ℙ ∖ {2}) → ((𝑗 − 1) / 2) ∈ ℕ)
3130adantr 481 . . . . . . . . . 10 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → ((𝑗 − 1) / 2) ∈ ℕ)
32 eldifi 4100 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℙ ∖ {2}) → 𝑗 ∈ ℙ)
3332adantr 481 . . . . . . . . . . . . . . 15 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗 ∈ ℙ)
34 prmnn 16006 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℙ → 𝑗 ∈ ℕ)
35 nncn 11634 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
3633, 34, 353syl 18 . . . . . . . . . . . . . 14 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗 ∈ ℂ)
37 ax-1cn 10583 . . . . . . . . . . . . . 14 1 ∈ ℂ
38 subcl 10873 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑗 − 1) ∈ ℂ)
3936, 37, 38sylancl 586 . . . . . . . . . . . . 13 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (𝑗 − 1) ∈ ℂ)
40 2cnd 11703 . . . . . . . . . . . . 13 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 2 ∈ ℂ)
41 2ne0 11729 . . . . . . . . . . . . . 14 2 ≠ 0
4241a1i 11 . . . . . . . . . . . . 13 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 2 ≠ 0)
4339, 40, 42divcan2d 11406 . . . . . . . . . . . 12 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (2 · ((𝑗 − 1) / 2)) = (𝑗 − 1))
4443oveq1d 7160 . . . . . . . . . . 11 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → ((2 · ((𝑗 − 1) / 2)) + 1) = ((𝑗 − 1) + 1))
45 npcan 10883 . . . . . . . . . . . 12 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑗 − 1) + 1) = 𝑗)
4636, 37, 45sylancl 586 . . . . . . . . . . 11 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → ((𝑗 − 1) + 1) = 𝑗)
4744, 46eqtr2d 2854 . . . . . . . . . 10 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗 = ((2 · ((𝑗 − 1) / 2)) + 1))
4843oveq2d 7161 . . . . . . . . . . . 12 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (0...(2 · ((𝑗 − 1) / 2))) = (0...(𝑗 − 1)))
49 nnm1nn0 11926 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → (𝑗 − 1) ∈ ℕ0)
5033, 34, 493syl 18 . . . . . . . . . . . . . 14 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (𝑗 − 1) ∈ ℕ0)
51 elnn0uz 12271 . . . . . . . . . . . . . 14 ((𝑗 − 1) ∈ ℕ0 ↔ (𝑗 − 1) ∈ (ℤ‘0))
5250, 51sylib 219 . . . . . . . . . . . . 13 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (𝑗 − 1) ∈ (ℤ‘0))
53 eluzfz1 12902 . . . . . . . . . . . . 13 ((𝑗 − 1) ∈ (ℤ‘0) → 0 ∈ (0...(𝑗 − 1)))
54 fzsplit 12921 . . . . . . . . . . . . 13 (0 ∈ (0...(𝑗 − 1)) → (0...(𝑗 − 1)) = ((0...0) ∪ ((0 + 1)...(𝑗 − 1))))
5552, 53, 543syl 18 . . . . . . . . . . . 12 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (0...(𝑗 − 1)) = ((0...0) ∪ ((0 + 1)...(𝑗 − 1))))
5648, 55eqtrd 2853 . . . . . . . . . . 11 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (0...(2 · ((𝑗 − 1) / 2))) = ((0...0) ∪ ((0 + 1)...(𝑗 − 1))))
57 fz0sn 12995 . . . . . . . . . . . . . 14 (0...0) = {0}
5814, 14oveq12i 7157 . . . . . . . . . . . . . . . . 17 (((abs‘0)↑2) + ((abs‘0)↑2)) = (0 + 0)
59 00id 10803 . . . . . . . . . . . . . . . . 17 (0 + 0) = 0
6058, 59eqtri 2841 . . . . . . . . . . . . . . . 16 (((abs‘0)↑2) + ((abs‘0)↑2)) = 0
61244sqlem4a 16275 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℤ[i] ∧ 0 ∈ ℤ[i]) → (((abs‘0)↑2) + ((abs‘0)↑2)) ∈ 𝑆)
6223, 23, 61mp2an 688 . . . . . . . . . . . . . . . 16 (((abs‘0)↑2) + ((abs‘0)↑2)) ∈ 𝑆
6360, 62eqeltrri 2907 . . . . . . . . . . . . . . 15 0 ∈ 𝑆
64 snssi 4733 . . . . . . . . . . . . . . 15 (0 ∈ 𝑆 → {0} ⊆ 𝑆)
6563, 64ax-mp 5 . . . . . . . . . . . . . 14 {0} ⊆ 𝑆
6657, 65eqsstri 3998 . . . . . . . . . . . . 13 (0...0) ⊆ 𝑆
6766a1i 11 . . . . . . . . . . . 12 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (0...0) ⊆ 𝑆)
68 0p1e1 11747 . . . . . . . . . . . . . 14 (0 + 1) = 1
6968oveq1i 7155 . . . . . . . . . . . . 13 ((0 + 1)...(𝑗 − 1)) = (1...(𝑗 − 1))
70 simpr 485 . . . . . . . . . . . . . 14 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆)
71 dfss3 3953 . . . . . . . . . . . . . 14 ((1...(𝑗 − 1)) ⊆ 𝑆 ↔ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆)
7270, 71sylibr 235 . . . . . . . . . . . . 13 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (1...(𝑗 − 1)) ⊆ 𝑆)
7369, 72eqsstrid 4012 . . . . . . . . . . . 12 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → ((0 + 1)...(𝑗 − 1)) ⊆ 𝑆)
7467, 73unssd 4159 . . . . . . . . . . 11 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → ((0...0) ∪ ((0 + 1)...(𝑗 − 1))) ⊆ 𝑆)
7556, 74eqsstrd 4002 . . . . . . . . . 10 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (0...(2 · ((𝑗 − 1) / 2))) ⊆ 𝑆)
76 oveq1 7152 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (𝑘 · 𝑗) = (𝑖 · 𝑗))
7776eleq1d 2894 . . . . . . . . . . 11 (𝑘 = 𝑖 → ((𝑘 · 𝑗) ∈ 𝑆 ↔ (𝑖 · 𝑗) ∈ 𝑆))
7877cbvrabv 3489 . . . . . . . . . 10 {𝑘 ∈ ℕ ∣ (𝑘 · 𝑗) ∈ 𝑆} = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑗) ∈ 𝑆}
79 eqid 2818 . . . . . . . . . 10 inf({𝑘 ∈ ℕ ∣ (𝑘 · 𝑗) ∈ 𝑆}, ℝ, < ) = inf({𝑘 ∈ ℕ ∣ (𝑘 · 𝑗) ∈ 𝑆}, ℝ, < )
8024, 31, 47, 33, 75, 78, 794sqlem18 16286 . . . . . . . . 9 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗𝑆)
8129, 80sylanbr 582 . . . . . . . 8 (((𝑗 ∈ ℙ ∧ 𝑗 ≠ 2) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗𝑆)
8281an32s 648 . . . . . . 7 (((𝑗 ∈ ℙ ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) ∧ 𝑗 ≠ 2) → 𝑗𝑆)
8310, 10oveq12i 7157 . . . . . . . . . 10 (((abs‘1)↑2) + ((abs‘1)↑2)) = (1 + 1)
84 df-2 11688 . . . . . . . . . 10 2 = (1 + 1)
8583, 84eqtr4i 2844 . . . . . . . . 9 (((abs‘1)↑2) + ((abs‘1)↑2)) = 2
86244sqlem4a 16275 . . . . . . . . . 10 ((1 ∈ ℤ[i] ∧ 1 ∈ ℤ[i]) → (((abs‘1)↑2) + ((abs‘1)↑2)) ∈ 𝑆)
8720, 20, 86mp2an 688 . . . . . . . . 9 (((abs‘1)↑2) + ((abs‘1)↑2)) ∈ 𝑆
8885, 87eqeltrri 2907 . . . . . . . 8 2 ∈ 𝑆
8988a1i 11 . . . . . . 7 ((𝑗 ∈ ℙ ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 2 ∈ 𝑆)
9028, 82, 89pm2.61ne 3099 . . . . . 6 ((𝑗 ∈ ℙ ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗𝑆)
9124mul4sq 16278 . . . . . . 7 ((𝑚𝑆𝑖𝑆) → (𝑚 · 𝑖) ∈ 𝑆)
9291a1i 11 . . . . . 6 ((𝑚 ∈ (ℤ‘2) ∧ 𝑖 ∈ (ℤ‘2)) → ((𝑚𝑆𝑖𝑆) → (𝑚 · 𝑖) ∈ 𝑆))
932, 3, 4, 5, 6, 27, 90, 92prmind2 16017 . . . . 5 (𝑘 ∈ ℕ → 𝑘𝑆)
94 id 22 . . . . . 6 (𝑘 = 0 → 𝑘 = 0)
9594, 63syl6eqel 2918 . . . . 5 (𝑘 = 0 → 𝑘𝑆)
9693, 95jaoi 851 . . . 4 ((𝑘 ∈ ℕ ∨ 𝑘 = 0) → 𝑘𝑆)
971, 96sylbi 218 . . 3 (𝑘 ∈ ℕ0𝑘𝑆)
9897ssriv 3968 . 2 0𝑆
99244sqlem1 16272 . 2 𝑆 ⊆ ℕ0
10098, 99eqssi 3980 1 0 = 𝑆
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 841   = wceq 1528  wcel 2105  {cab 2796  wne 3013  wral 3135  wrex 3136  {crab 3139  cdif 3930  cun 3931  wss 3933  {csn 4557  cfv 6348  (class class class)co 7145  infcinf 8893  cc 10523  cr 10524  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530   < clt 10663  cmin 10858   / cdiv 11285  cn 11626  2c2 11680  0cn0 11885  cz 11969  cuz 12231  ...cfz 12880  cexp 13417  abscabs 14581  cprime 16003  ℤ[i]cgz 16253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12881  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-dvds 15596  df-gcd 15832  df-prm 16004  df-gz 16254
This theorem is referenced by:  4sq  16288
  Copyright terms: Public domain W3C validator