MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem19 Structured version   Visualization version   GIF version

Theorem 4sqlem19 16592
Description: Lemma for 4sq 16593. The proof is by strong induction - we show that if all the integers less than 𝑘 are in 𝑆, then 𝑘 is as well. In this part of the proof we do the induction argument and dispense with all the cases except the odd prime case, which is sent to 4sqlem18 16591. If 𝑘 is 0, 1, 2, we show 𝑘𝑆 directly; otherwise if 𝑘 is composite, 𝑘 is the product of two numbers less than it (and hence in 𝑆 by assumption), so by mul4sq 16583 𝑘𝑆. (Contributed by Mario Carneiro, 14-Jul-2014.) (Revised by Mario Carneiro, 20-Jun-2015.)
Hypothesis
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
Assertion
Ref Expression
4sqlem19 0 = 𝑆
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧   𝑆,𝑛
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem 4sqlem19
Dummy variables 𝑗 𝑘 𝑖 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 12165 . . . 4 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
2 eleq1 2826 . . . . . 6 (𝑗 = 1 → (𝑗𝑆 ↔ 1 ∈ 𝑆))
3 eleq1 2826 . . . . . 6 (𝑗 = 𝑚 → (𝑗𝑆𝑚𝑆))
4 eleq1 2826 . . . . . 6 (𝑗 = 𝑖 → (𝑗𝑆𝑖𝑆))
5 eleq1 2826 . . . . . 6 (𝑗 = (𝑚 · 𝑖) → (𝑗𝑆 ↔ (𝑚 · 𝑖) ∈ 𝑆))
6 eleq1 2826 . . . . . 6 (𝑗 = 𝑘 → (𝑗𝑆𝑘𝑆))
7 abs1 14937 . . . . . . . . . . 11 (abs‘1) = 1
87oveq1i 7265 . . . . . . . . . 10 ((abs‘1)↑2) = (1↑2)
9 sq1 13840 . . . . . . . . . 10 (1↑2) = 1
108, 9eqtri 2766 . . . . . . . . 9 ((abs‘1)↑2) = 1
11 abs0 14925 . . . . . . . . . . 11 (abs‘0) = 0
1211oveq1i 7265 . . . . . . . . . 10 ((abs‘0)↑2) = (0↑2)
13 sq0 13837 . . . . . . . . . 10 (0↑2) = 0
1412, 13eqtri 2766 . . . . . . . . 9 ((abs‘0)↑2) = 0
1510, 14oveq12i 7267 . . . . . . . 8 (((abs‘1)↑2) + ((abs‘0)↑2)) = (1 + 0)
16 1p0e1 12027 . . . . . . . 8 (1 + 0) = 1
1715, 16eqtri 2766 . . . . . . 7 (((abs‘1)↑2) + ((abs‘0)↑2)) = 1
18 1z 12280 . . . . . . . . 9 1 ∈ ℤ
19 zgz 16562 . . . . . . . . 9 (1 ∈ ℤ → 1 ∈ ℤ[i])
2018, 19ax-mp 5 . . . . . . . 8 1 ∈ ℤ[i]
21 0z 12260 . . . . . . . . 9 0 ∈ ℤ
22 zgz 16562 . . . . . . . . 9 (0 ∈ ℤ → 0 ∈ ℤ[i])
2321, 22ax-mp 5 . . . . . . . 8 0 ∈ ℤ[i]
24 4sq.1 . . . . . . . . 9 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
25244sqlem4a 16580 . . . . . . . 8 ((1 ∈ ℤ[i] ∧ 0 ∈ ℤ[i]) → (((abs‘1)↑2) + ((abs‘0)↑2)) ∈ 𝑆)
2620, 23, 25mp2an 688 . . . . . . 7 (((abs‘1)↑2) + ((abs‘0)↑2)) ∈ 𝑆
2717, 26eqeltrri 2836 . . . . . 6 1 ∈ 𝑆
28 eleq1 2826 . . . . . . 7 (𝑗 = 2 → (𝑗𝑆 ↔ 2 ∈ 𝑆))
29 eldifsn 4717 . . . . . . . . 9 (𝑗 ∈ (ℙ ∖ {2}) ↔ (𝑗 ∈ ℙ ∧ 𝑗 ≠ 2))
30 oddprm 16439 . . . . . . . . . . 11 (𝑗 ∈ (ℙ ∖ {2}) → ((𝑗 − 1) / 2) ∈ ℕ)
3130adantr 480 . . . . . . . . . 10 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → ((𝑗 − 1) / 2) ∈ ℕ)
32 eldifi 4057 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℙ ∖ {2}) → 𝑗 ∈ ℙ)
3332adantr 480 . . . . . . . . . . . . . . 15 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗 ∈ ℙ)
34 prmnn 16307 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℙ → 𝑗 ∈ ℕ)
35 nncn 11911 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
3633, 34, 353syl 18 . . . . . . . . . . . . . 14 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗 ∈ ℂ)
37 ax-1cn 10860 . . . . . . . . . . . . . 14 1 ∈ ℂ
38 subcl 11150 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑗 − 1) ∈ ℂ)
3936, 37, 38sylancl 585 . . . . . . . . . . . . 13 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (𝑗 − 1) ∈ ℂ)
40 2cnd 11981 . . . . . . . . . . . . 13 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 2 ∈ ℂ)
41 2ne0 12007 . . . . . . . . . . . . . 14 2 ≠ 0
4241a1i 11 . . . . . . . . . . . . 13 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 2 ≠ 0)
4339, 40, 42divcan2d 11683 . . . . . . . . . . . 12 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (2 · ((𝑗 − 1) / 2)) = (𝑗 − 1))
4443oveq1d 7270 . . . . . . . . . . 11 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → ((2 · ((𝑗 − 1) / 2)) + 1) = ((𝑗 − 1) + 1))
45 npcan 11160 . . . . . . . . . . . 12 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑗 − 1) + 1) = 𝑗)
4636, 37, 45sylancl 585 . . . . . . . . . . 11 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → ((𝑗 − 1) + 1) = 𝑗)
4744, 46eqtr2d 2779 . . . . . . . . . 10 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗 = ((2 · ((𝑗 − 1) / 2)) + 1))
4843oveq2d 7271 . . . . . . . . . . . 12 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (0...(2 · ((𝑗 − 1) / 2))) = (0...(𝑗 − 1)))
49 nnm1nn0 12204 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → (𝑗 − 1) ∈ ℕ0)
5033, 34, 493syl 18 . . . . . . . . . . . . . 14 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (𝑗 − 1) ∈ ℕ0)
51 elnn0uz 12552 . . . . . . . . . . . . . 14 ((𝑗 − 1) ∈ ℕ0 ↔ (𝑗 − 1) ∈ (ℤ‘0))
5250, 51sylib 217 . . . . . . . . . . . . 13 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (𝑗 − 1) ∈ (ℤ‘0))
53 eluzfz1 13192 . . . . . . . . . . . . 13 ((𝑗 − 1) ∈ (ℤ‘0) → 0 ∈ (0...(𝑗 − 1)))
54 fzsplit 13211 . . . . . . . . . . . . 13 (0 ∈ (0...(𝑗 − 1)) → (0...(𝑗 − 1)) = ((0...0) ∪ ((0 + 1)...(𝑗 − 1))))
5552, 53, 543syl 18 . . . . . . . . . . . 12 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (0...(𝑗 − 1)) = ((0...0) ∪ ((0 + 1)...(𝑗 − 1))))
5648, 55eqtrd 2778 . . . . . . . . . . 11 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (0...(2 · ((𝑗 − 1) / 2))) = ((0...0) ∪ ((0 + 1)...(𝑗 − 1))))
57 fz0sn 13285 . . . . . . . . . . . . . 14 (0...0) = {0}
5814, 14oveq12i 7267 . . . . . . . . . . . . . . . . 17 (((abs‘0)↑2) + ((abs‘0)↑2)) = (0 + 0)
59 00id 11080 . . . . . . . . . . . . . . . . 17 (0 + 0) = 0
6058, 59eqtri 2766 . . . . . . . . . . . . . . . 16 (((abs‘0)↑2) + ((abs‘0)↑2)) = 0
61244sqlem4a 16580 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℤ[i] ∧ 0 ∈ ℤ[i]) → (((abs‘0)↑2) + ((abs‘0)↑2)) ∈ 𝑆)
6223, 23, 61mp2an 688 . . . . . . . . . . . . . . . 16 (((abs‘0)↑2) + ((abs‘0)↑2)) ∈ 𝑆
6360, 62eqeltrri 2836 . . . . . . . . . . . . . . 15 0 ∈ 𝑆
64 snssi 4738 . . . . . . . . . . . . . . 15 (0 ∈ 𝑆 → {0} ⊆ 𝑆)
6563, 64ax-mp 5 . . . . . . . . . . . . . 14 {0} ⊆ 𝑆
6657, 65eqsstri 3951 . . . . . . . . . . . . 13 (0...0) ⊆ 𝑆
6766a1i 11 . . . . . . . . . . . 12 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (0...0) ⊆ 𝑆)
68 0p1e1 12025 . . . . . . . . . . . . . 14 (0 + 1) = 1
6968oveq1i 7265 . . . . . . . . . . . . 13 ((0 + 1)...(𝑗 − 1)) = (1...(𝑗 − 1))
70 simpr 484 . . . . . . . . . . . . . 14 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆)
71 dfss3 3905 . . . . . . . . . . . . . 14 ((1...(𝑗 − 1)) ⊆ 𝑆 ↔ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆)
7270, 71sylibr 233 . . . . . . . . . . . . 13 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (1...(𝑗 − 1)) ⊆ 𝑆)
7369, 72eqsstrid 3965 . . . . . . . . . . . 12 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → ((0 + 1)...(𝑗 − 1)) ⊆ 𝑆)
7467, 73unssd 4116 . . . . . . . . . . 11 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → ((0...0) ∪ ((0 + 1)...(𝑗 − 1))) ⊆ 𝑆)
7556, 74eqsstrd 3955 . . . . . . . . . 10 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → (0...(2 · ((𝑗 − 1) / 2))) ⊆ 𝑆)
76 oveq1 7262 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (𝑘 · 𝑗) = (𝑖 · 𝑗))
7776eleq1d 2823 . . . . . . . . . . 11 (𝑘 = 𝑖 → ((𝑘 · 𝑗) ∈ 𝑆 ↔ (𝑖 · 𝑗) ∈ 𝑆))
7877cbvrabv 3416 . . . . . . . . . 10 {𝑘 ∈ ℕ ∣ (𝑘 · 𝑗) ∈ 𝑆} = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑗) ∈ 𝑆}
79 eqid 2738 . . . . . . . . . 10 inf({𝑘 ∈ ℕ ∣ (𝑘 · 𝑗) ∈ 𝑆}, ℝ, < ) = inf({𝑘 ∈ ℕ ∣ (𝑘 · 𝑗) ∈ 𝑆}, ℝ, < )
8024, 31, 47, 33, 75, 78, 794sqlem18 16591 . . . . . . . . 9 ((𝑗 ∈ (ℙ ∖ {2}) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗𝑆)
8129, 80sylanbr 581 . . . . . . . 8 (((𝑗 ∈ ℙ ∧ 𝑗 ≠ 2) ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗𝑆)
8281an32s 648 . . . . . . 7 (((𝑗 ∈ ℙ ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) ∧ 𝑗 ≠ 2) → 𝑗𝑆)
8310, 10oveq12i 7267 . . . . . . . . . 10 (((abs‘1)↑2) + ((abs‘1)↑2)) = (1 + 1)
84 df-2 11966 . . . . . . . . . 10 2 = (1 + 1)
8583, 84eqtr4i 2769 . . . . . . . . 9 (((abs‘1)↑2) + ((abs‘1)↑2)) = 2
86244sqlem4a 16580 . . . . . . . . . 10 ((1 ∈ ℤ[i] ∧ 1 ∈ ℤ[i]) → (((abs‘1)↑2) + ((abs‘1)↑2)) ∈ 𝑆)
8720, 20, 86mp2an 688 . . . . . . . . 9 (((abs‘1)↑2) + ((abs‘1)↑2)) ∈ 𝑆
8885, 87eqeltrri 2836 . . . . . . . 8 2 ∈ 𝑆
8988a1i 11 . . . . . . 7 ((𝑗 ∈ ℙ ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 2 ∈ 𝑆)
9028, 82, 89pm2.61ne 3029 . . . . . 6 ((𝑗 ∈ ℙ ∧ ∀𝑚 ∈ (1...(𝑗 − 1))𝑚𝑆) → 𝑗𝑆)
9124mul4sq 16583 . . . . . . 7 ((𝑚𝑆𝑖𝑆) → (𝑚 · 𝑖) ∈ 𝑆)
9291a1i 11 . . . . . 6 ((𝑚 ∈ (ℤ‘2) ∧ 𝑖 ∈ (ℤ‘2)) → ((𝑚𝑆𝑖𝑆) → (𝑚 · 𝑖) ∈ 𝑆))
932, 3, 4, 5, 6, 27, 90, 92prmind2 16318 . . . . 5 (𝑘 ∈ ℕ → 𝑘𝑆)
94 id 22 . . . . . 6 (𝑘 = 0 → 𝑘 = 0)
9594, 63eqeltrdi 2847 . . . . 5 (𝑘 = 0 → 𝑘𝑆)
9693, 95jaoi 853 . . . 4 ((𝑘 ∈ ℕ ∨ 𝑘 = 0) → 𝑘𝑆)
971, 96sylbi 216 . . 3 (𝑘 ∈ ℕ0𝑘𝑆)
9897ssriv 3921 . 2 0𝑆
99244sqlem1 16577 . 2 𝑆 ⊆ ℕ0
10098, 99eqssi 3933 1 0 = 𝑆
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  {cab 2715  wne 2942  wral 3063  wrex 3064  {crab 3067  cdif 3880  cun 3881  wss 3883  {csn 4558  cfv 6418  (class class class)co 7255  infcinf 9130  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cz 12249  cuz 12511  ...cfz 13168  cexp 13710  abscabs 14873  cprime 16304  ℤ[i]cgz 16558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-prm 16305  df-gz 16559
This theorem is referenced by:  4sq  16593
  Copyright terms: Public domain W3C validator