Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > nmcoplb | Structured version Visualization version GIF version |
Description: A lower bound for the norm of a continuous linear Hilbert space operator. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmcoplb | ⊢ ((𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ∧ 𝐴 ∈ ℋ) → (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3859 | . . 3 ⊢ (𝑇 ∈ (LinOp ∩ ContOp) ↔ (𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp)) | |
2 | fveq1 6673 | . . . . . . . 8 ⊢ (𝑇 = if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) → (𝑇‘𝐴) = (if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ))‘𝐴)) | |
3 | 2 | fveq2d 6678 | . . . . . . 7 ⊢ (𝑇 = if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) → (normℎ‘(𝑇‘𝐴)) = (normℎ‘(if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ))‘𝐴))) |
4 | fveq2 6674 | . . . . . . . 8 ⊢ (𝑇 = if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) → (normop‘𝑇) = (normop‘if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)))) | |
5 | 4 | oveq1d 7185 | . . . . . . 7 ⊢ (𝑇 = if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) → ((normop‘𝑇) · (normℎ‘𝐴)) = ((normop‘if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ))) · (normℎ‘𝐴))) |
6 | 3, 5 | breq12d 5043 | . . . . . 6 ⊢ (𝑇 = if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) → ((normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴)) ↔ (normℎ‘(if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ))‘𝐴)) ≤ ((normop‘if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ))) · (normℎ‘𝐴)))) |
7 | 6 | imbi2d 344 | . . . . 5 ⊢ (𝑇 = if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) → ((𝐴 ∈ ℋ → (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) ↔ (𝐴 ∈ ℋ → (normℎ‘(if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ))‘𝐴)) ≤ ((normop‘if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ))) · (normℎ‘𝐴))))) |
8 | idlnop 29927 | . . . . . . . . . 10 ⊢ ( I ↾ ℋ) ∈ LinOp | |
9 | idcnop 29916 | . . . . . . . . . 10 ⊢ ( I ↾ ℋ) ∈ ContOp | |
10 | elin 3859 | . . . . . . . . . 10 ⊢ (( I ↾ ℋ) ∈ (LinOp ∩ ContOp) ↔ (( I ↾ ℋ) ∈ LinOp ∧ ( I ↾ ℋ) ∈ ContOp)) | |
11 | 8, 9, 10 | mpbir2an 711 | . . . . . . . . 9 ⊢ ( I ↾ ℋ) ∈ (LinOp ∩ ContOp) |
12 | 11 | elimel 4483 | . . . . . . . 8 ⊢ if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ (LinOp ∩ ContOp) |
13 | elin 3859 | . . . . . . . 8 ⊢ (if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ (LinOp ∩ ContOp) ↔ (if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ ContOp)) | |
14 | 12, 13 | mpbi 233 | . . . . . . 7 ⊢ (if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ ContOp) |
15 | 14 | simpli 487 | . . . . . 6 ⊢ if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ LinOp |
16 | 14 | simpri 489 | . . . . . 6 ⊢ if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ ContOp |
17 | 15, 16 | nmcoplbi 29963 | . . . . 5 ⊢ (𝐴 ∈ ℋ → (normℎ‘(if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ))‘𝐴)) ≤ ((normop‘if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ))) · (normℎ‘𝐴))) |
18 | 7, 17 | dedth 4472 | . . . 4 ⊢ (𝑇 ∈ (LinOp ∩ ContOp) → (𝐴 ∈ ℋ → (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴)))) |
19 | 18 | imp 410 | . . 3 ⊢ ((𝑇 ∈ (LinOp ∩ ContOp) ∧ 𝐴 ∈ ℋ) → (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) |
20 | 1, 19 | sylanbr 585 | . 2 ⊢ (((𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp) ∧ 𝐴 ∈ ℋ) → (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) |
21 | 20 | 3impa 1111 | 1 ⊢ ((𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ∧ 𝐴 ∈ ℋ) → (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ∩ cin 3842 ifcif 4414 class class class wbr 5030 I cid 5428 ↾ cres 5527 ‘cfv 6339 (class class class)co 7170 · cmul 10620 ≤ cle 10754 ℋchba 28854 normℎcno 28858 normopcnop 28880 ContOpccop 28881 LinOpclo 28882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 ax-hilex 28934 ax-hfvadd 28935 ax-hvcom 28936 ax-hvass 28937 ax-hv0cl 28938 ax-hvaddid 28939 ax-hfvmul 28940 ax-hvmulid 28941 ax-hvmulass 28942 ax-hvdistr1 28943 ax-hvdistr2 28944 ax-hvmul0 28945 ax-hfi 29014 ax-his1 29017 ax-his2 29018 ax-his3 29019 ax-his4 29020 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-er 8320 df-map 8439 df-en 8556 df-dom 8557 df-sdom 8558 df-sup 8979 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-n0 11977 df-z 12063 df-uz 12325 df-rp 12473 df-seq 13461 df-exp 13522 df-cj 14548 df-re 14549 df-im 14550 df-sqrt 14684 df-abs 14685 df-grpo 28428 df-gid 28429 df-ablo 28480 df-vc 28494 df-nv 28527 df-va 28530 df-ba 28531 df-sm 28532 df-0v 28533 df-nmcv 28535 df-hnorm 28903 df-hba 28904 df-hvsub 28906 df-nmop 29774 df-cnop 29775 df-lnop 29776 df-unop 29778 |
This theorem is referenced by: lnopconi 29969 |
Copyright terms: Public domain | W3C validator |