|   | Hilbert Space Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > HSE Home > Th. List > nmcoplb | Structured version Visualization version GIF version | ||
| Description: A lower bound for the norm of a continuous linear Hilbert space operator. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| nmcoplb | ⊢ ((𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ∧ 𝐴 ∈ ℋ) → (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elin 3967 | . . 3 ⊢ (𝑇 ∈ (LinOp ∩ ContOp) ↔ (𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp)) | |
| 2 | fveq1 6905 | . . . . . . . 8 ⊢ (𝑇 = if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) → (𝑇‘𝐴) = (if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ))‘𝐴)) | |
| 3 | 2 | fveq2d 6910 | . . . . . . 7 ⊢ (𝑇 = if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) → (normℎ‘(𝑇‘𝐴)) = (normℎ‘(if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ))‘𝐴))) | 
| 4 | fveq2 6906 | . . . . . . . 8 ⊢ (𝑇 = if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) → (normop‘𝑇) = (normop‘if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)))) | |
| 5 | 4 | oveq1d 7446 | . . . . . . 7 ⊢ (𝑇 = if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) → ((normop‘𝑇) · (normℎ‘𝐴)) = ((normop‘if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ))) · (normℎ‘𝐴))) | 
| 6 | 3, 5 | breq12d 5156 | . . . . . 6 ⊢ (𝑇 = if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) → ((normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴)) ↔ (normℎ‘(if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ))‘𝐴)) ≤ ((normop‘if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ))) · (normℎ‘𝐴)))) | 
| 7 | 6 | imbi2d 340 | . . . . 5 ⊢ (𝑇 = if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) → ((𝐴 ∈ ℋ → (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) ↔ (𝐴 ∈ ℋ → (normℎ‘(if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ))‘𝐴)) ≤ ((normop‘if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ))) · (normℎ‘𝐴))))) | 
| 8 | idlnop 32011 | . . . . . . . . . 10 ⊢ ( I ↾ ℋ) ∈ LinOp | |
| 9 | idcnop 32000 | . . . . . . . . . 10 ⊢ ( I ↾ ℋ) ∈ ContOp | |
| 10 | elin 3967 | . . . . . . . . . 10 ⊢ (( I ↾ ℋ) ∈ (LinOp ∩ ContOp) ↔ (( I ↾ ℋ) ∈ LinOp ∧ ( I ↾ ℋ) ∈ ContOp)) | |
| 11 | 8, 9, 10 | mpbir2an 711 | . . . . . . . . 9 ⊢ ( I ↾ ℋ) ∈ (LinOp ∩ ContOp) | 
| 12 | 11 | elimel 4595 | . . . . . . . 8 ⊢ if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ (LinOp ∩ ContOp) | 
| 13 | elin 3967 | . . . . . . . 8 ⊢ (if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ (LinOp ∩ ContOp) ↔ (if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ ContOp)) | |
| 14 | 12, 13 | mpbi 230 | . . . . . . 7 ⊢ (if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ ContOp) | 
| 15 | 14 | simpli 483 | . . . . . 6 ⊢ if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ LinOp | 
| 16 | 14 | simpri 485 | . . . . . 6 ⊢ if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ ContOp | 
| 17 | 15, 16 | nmcoplbi 32047 | . . . . 5 ⊢ (𝐴 ∈ ℋ → (normℎ‘(if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ))‘𝐴)) ≤ ((normop‘if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ))) · (normℎ‘𝐴))) | 
| 18 | 7, 17 | dedth 4584 | . . . 4 ⊢ (𝑇 ∈ (LinOp ∩ ContOp) → (𝐴 ∈ ℋ → (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴)))) | 
| 19 | 18 | imp 406 | . . 3 ⊢ ((𝑇 ∈ (LinOp ∩ ContOp) ∧ 𝐴 ∈ ℋ) → (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) | 
| 20 | 1, 19 | sylanbr 582 | . 2 ⊢ (((𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp) ∧ 𝐴 ∈ ℋ) → (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) | 
| 21 | 20 | 3impa 1110 | 1 ⊢ ((𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ∧ 𝐴 ∈ ℋ) → (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∩ cin 3950 ifcif 4525 class class class wbr 5143 I cid 5577 ↾ cres 5687 ‘cfv 6561 (class class class)co 7431 · cmul 11160 ≤ cle 11296 ℋchba 30938 normℎcno 30942 normopcnop 30964 ContOpccop 30965 LinOpclo 30966 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-hilex 31018 ax-hfvadd 31019 ax-hvcom 31020 ax-hvass 31021 ax-hv0cl 31022 ax-hvaddid 31023 ax-hfvmul 31024 ax-hvmulid 31025 ax-hvmulass 31026 ax-hvdistr1 31027 ax-hvdistr2 31028 ax-hvmul0 31029 ax-hfi 31098 ax-his1 31101 ax-his2 31102 ax-his3 31103 ax-his4 31104 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-grpo 30512 df-gid 30513 df-ablo 30564 df-vc 30578 df-nv 30611 df-va 30614 df-ba 30615 df-sm 30616 df-0v 30617 df-nmcv 30619 df-hnorm 30987 df-hba 30988 df-hvsub 30990 df-nmop 31858 df-cnop 31859 df-lnop 31860 df-unop 31862 | 
| This theorem is referenced by: lnopconi 32053 | 
| Copyright terms: Public domain | W3C validator |