HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcoplb Structured version   Visualization version   GIF version

Theorem nmcoplb 29722
Description: A lower bound for the norm of a continuous linear Hilbert space operator. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
nmcoplb ((𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ∧ 𝐴 ∈ ℋ) → (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴)))

Proof of Theorem nmcoplb
StepHypRef Expression
1 elin 4172 . . 3 (𝑇 ∈ (LinOp ∩ ContOp) ↔ (𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp))
2 fveq1 6665 . . . . . . . 8 (𝑇 = if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) → (𝑇𝐴) = (if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ))‘𝐴))
32fveq2d 6670 . . . . . . 7 (𝑇 = if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) → (norm‘(𝑇𝐴)) = (norm‘(if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ))‘𝐴)))
4 fveq2 6666 . . . . . . . 8 (𝑇 = if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) → (normop𝑇) = (normop‘if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ))))
54oveq1d 7166 . . . . . . 7 (𝑇 = if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) → ((normop𝑇) · (norm𝐴)) = ((normop‘if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ))) · (norm𝐴)))
63, 5breq12d 5075 . . . . . 6 (𝑇 = if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) → ((norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴)) ↔ (norm‘(if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ))‘𝐴)) ≤ ((normop‘if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ))) · (norm𝐴))))
76imbi2d 342 . . . . 5 (𝑇 = if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) → ((𝐴 ∈ ℋ → (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴))) ↔ (𝐴 ∈ ℋ → (norm‘(if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ))‘𝐴)) ≤ ((normop‘if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ))) · (norm𝐴)))))
8 idlnop 29684 . . . . . . . . . 10 ( I ↾ ℋ) ∈ LinOp
9 idcnop 29673 . . . . . . . . . 10 ( I ↾ ℋ) ∈ ContOp
10 elin 4172 . . . . . . . . . 10 (( I ↾ ℋ) ∈ (LinOp ∩ ContOp) ↔ (( I ↾ ℋ) ∈ LinOp ∧ ( I ↾ ℋ) ∈ ContOp))
118, 9, 10mpbir2an 707 . . . . . . . . 9 ( I ↾ ℋ) ∈ (LinOp ∩ ContOp)
1211elimel 4536 . . . . . . . 8 if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ (LinOp ∩ ContOp)
13 elin 4172 . . . . . . . 8 (if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ (LinOp ∩ ContOp) ↔ (if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ ContOp))
1412, 13mpbi 231 . . . . . . 7 (if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ LinOp ∧ if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ ContOp)
1514simpli 484 . . . . . 6 if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ LinOp
1614simpri 486 . . . . . 6 if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ)) ∈ ContOp
1715, 16nmcoplbi 29720 . . . . 5 (𝐴 ∈ ℋ → (norm‘(if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ))‘𝐴)) ≤ ((normop‘if(𝑇 ∈ (LinOp ∩ ContOp), 𝑇, ( I ↾ ℋ))) · (norm𝐴)))
187, 17dedth 4525 . . . 4 (𝑇 ∈ (LinOp ∩ ContOp) → (𝐴 ∈ ℋ → (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴))))
1918imp 407 . . 3 ((𝑇 ∈ (LinOp ∩ ContOp) ∧ 𝐴 ∈ ℋ) → (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴)))
201, 19sylanbr 582 . 2 (((𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp) ∧ 𝐴 ∈ ℋ) → (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴)))
21203impa 1104 1 ((𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ∧ 𝐴 ∈ ℋ) → (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2106  cin 3938  ifcif 4469   class class class wbr 5062   I cid 5457  cres 5555  cfv 6351  (class class class)co 7151   · cmul 10534  cle 10668  chba 28611  normcno 28615  normopcnop 28637  ContOpccop 28638  LinOpclo 28639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-13 2385  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-hilex 28691  ax-hfvadd 28692  ax-hvcom 28693  ax-hvass 28694  ax-hv0cl 28695  ax-hvaddid 28696  ax-hfvmul 28697  ax-hvmulid 28698  ax-hvmulass 28699  ax-hvdistr1 28700  ax-hvdistr2 28701  ax-hvmul0 28702  ax-hfi 28771  ax-his1 28774  ax-his2 28775  ax-his3 28776  ax-his4 28777
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12383  df-seq 13363  df-exp 13423  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-grpo 28185  df-gid 28186  df-ablo 28237  df-vc 28251  df-nv 28284  df-va 28287  df-ba 28288  df-sm 28289  df-0v 28290  df-nmcv 28292  df-hnorm 28660  df-hba 28661  df-hvsub 28663  df-nmop 29531  df-cnop 29532  df-lnop 29533  df-unop 29535
This theorem is referenced by:  lnopconi  29726
  Copyright terms: Public domain W3C validator