MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expge0 Structured version   Visualization version   GIF version

Theorem expge0 14007
Description: A nonnegative real raised to a nonnegative integer is nonnegative. (Contributed by NM, 16-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expge0 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴𝑁))

Proof of Theorem expge0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5097 . . . . 5 (𝑧 = 𝐴 → (0 ≤ 𝑧 ↔ 0 ≤ 𝐴))
21elrab 3643 . . . 4 (𝐴 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
3 ssrab2 4029 . . . . . . 7 {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ⊆ ℝ
4 ax-resscn 11070 . . . . . . 7 ℝ ⊆ ℂ
53, 4sstri 3940 . . . . . 6 {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ⊆ ℂ
6 breq2 5097 . . . . . . . 8 (𝑧 = 𝑥 → (0 ≤ 𝑧 ↔ 0 ≤ 𝑥))
76elrab 3643 . . . . . . 7 (𝑥 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
8 breq2 5097 . . . . . . . 8 (𝑧 = 𝑦 → (0 ≤ 𝑧 ↔ 0 ≤ 𝑦))
98elrab 3643 . . . . . . 7 (𝑦 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦))
10 breq2 5097 . . . . . . . 8 (𝑧 = (𝑥 · 𝑦) → (0 ≤ 𝑧 ↔ 0 ≤ (𝑥 · 𝑦)))
11 remulcl 11098 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
1211ad2ant2r 747 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → (𝑥 · 𝑦) ∈ ℝ)
13 mulge0 11642 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → 0 ≤ (𝑥 · 𝑦))
1410, 12, 13elrabd 3645 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧})
157, 9, 14syl2anb 598 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧}) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧})
16 1re 11119 . . . . . . 7 1 ∈ ℝ
17 0le1 11647 . . . . . . 7 0 ≤ 1
18 breq2 5097 . . . . . . . 8 (𝑧 = 1 → (0 ≤ 𝑧 ↔ 0 ≤ 1))
1918elrab 3643 . . . . . . 7 (1 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (1 ∈ ℝ ∧ 0 ≤ 1))
2016, 17, 19mpbir2an 711 . . . . . 6 1 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧}
215, 15, 20expcllem 13981 . . . . 5 ((𝐴 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧})
22 breq2 5097 . . . . . . 7 (𝑧 = (𝐴𝑁) → (0 ≤ 𝑧 ↔ 0 ≤ (𝐴𝑁)))
2322elrab 3643 . . . . . 6 ((𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ ((𝐴𝑁) ∈ ℝ ∧ 0 ≤ (𝐴𝑁)))
2423simprbi 496 . . . . 5 ((𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} → 0 ≤ (𝐴𝑁))
2521, 24syl 17 . . . 4 ((𝐴 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ∧ 𝑁 ∈ ℕ0) → 0 ≤ (𝐴𝑁))
262, 25sylanbr 582 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑁 ∈ ℕ0) → 0 ≤ (𝐴𝑁))
27263impa 1109 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝑁 ∈ ℕ0) → 0 ≤ (𝐴𝑁))
28273com23 1126 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2113  {crab 3396   class class class wbr 5093  (class class class)co 7352  cc 11011  cr 11012  0cc0 11013  1c1 11014   · cmul 11018  cle 11154  0cn0 12388  cexp 13970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-seq 13911  df-exp 13971
This theorem is referenced by:  expge0d  14073  leexp2r  14083  leexp1a  14084  rpnnen2lem4  16128
  Copyright terms: Public domain W3C validator