![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > expge0 | Structured version Visualization version GIF version |
Description: A nonnegative real raised to a nonnegative integer is nonnegative. (Contributed by NM, 16-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
expge0 | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5151 | . . . . 5 ⊢ (𝑧 = 𝐴 → (0 ≤ 𝑧 ↔ 0 ≤ 𝐴)) | |
2 | 1 | elrab 3694 | . . . 4 ⊢ (𝐴 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
3 | ssrab2 4089 | . . . . . . 7 ⊢ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ⊆ ℝ | |
4 | ax-resscn 11209 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
5 | 3, 4 | sstri 4004 | . . . . . 6 ⊢ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ⊆ ℂ |
6 | breq2 5151 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (0 ≤ 𝑧 ↔ 0 ≤ 𝑥)) | |
7 | 6 | elrab 3694 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) |
8 | breq2 5151 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → (0 ≤ 𝑧 ↔ 0 ≤ 𝑦)) | |
9 | 8 | elrab 3694 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) |
10 | breq2 5151 | . . . . . . . 8 ⊢ (𝑧 = (𝑥 · 𝑦) → (0 ≤ 𝑧 ↔ 0 ≤ (𝑥 · 𝑦))) | |
11 | remulcl 11237 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ) | |
12 | 11 | ad2ant2r 747 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → (𝑥 · 𝑦) ∈ ℝ) |
13 | mulge0 11778 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → 0 ≤ (𝑥 · 𝑦)) | |
14 | 10, 12, 13 | elrabd 3696 | . . . . . . 7 ⊢ (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧}) |
15 | 7, 9, 14 | syl2anb 598 | . . . . . 6 ⊢ ((𝑥 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧}) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧}) |
16 | 1re 11258 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
17 | 0le1 11783 | . . . . . . 7 ⊢ 0 ≤ 1 | |
18 | breq2 5151 | . . . . . . . 8 ⊢ (𝑧 = 1 → (0 ≤ 𝑧 ↔ 0 ≤ 1)) | |
19 | 18 | elrab 3694 | . . . . . . 7 ⊢ (1 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (1 ∈ ℝ ∧ 0 ≤ 1)) |
20 | 16, 17, 19 | mpbir2an 711 | . . . . . 6 ⊢ 1 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} |
21 | 5, 15, 20 | expcllem 14109 | . . . . 5 ⊢ ((𝐴 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧}) |
22 | breq2 5151 | . . . . . . 7 ⊢ (𝑧 = (𝐴↑𝑁) → (0 ≤ 𝑧 ↔ 0 ≤ (𝐴↑𝑁))) | |
23 | 22 | elrab 3694 | . . . . . 6 ⊢ ((𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ ((𝐴↑𝑁) ∈ ℝ ∧ 0 ≤ (𝐴↑𝑁))) |
24 | 23 | simprbi 496 | . . . . 5 ⊢ ((𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} → 0 ≤ (𝐴↑𝑁)) |
25 | 21, 24 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ∧ 𝑁 ∈ ℕ0) → 0 ≤ (𝐴↑𝑁)) |
26 | 2, 25 | sylanbr 582 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑁 ∈ ℕ0) → 0 ≤ (𝐴↑𝑁)) |
27 | 26 | 3impa 1109 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝑁 ∈ ℕ0) → 0 ≤ (𝐴↑𝑁)) |
28 | 27 | 3com23 1125 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴↑𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2105 {crab 3432 class class class wbr 5147 (class class class)co 7430 ℂcc 11150 ℝcr 11151 0cc0 11152 1c1 11153 · cmul 11157 ≤ cle 11293 ℕ0cn0 12523 ↑cexp 14098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-n0 12524 df-z 12611 df-uz 12876 df-seq 14039 df-exp 14099 |
This theorem is referenced by: expge0d 14200 leexp2r 14210 leexp1a 14211 rpnnen2lem4 16249 |
Copyright terms: Public domain | W3C validator |