Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > expge0 | Structured version Visualization version GIF version |
Description: Nonnegative integer exponentiation with a nonnegative mantissa is nonnegative. (Contributed by NM, 16-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
expge0 | ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5037 | . . . . 5 ⊢ (𝑧 = 𝐴 → (0 ≤ 𝑧 ↔ 0 ≤ 𝐴)) | |
2 | 1 | elrab 3603 | . . . 4 ⊢ (𝐴 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
3 | ssrab2 3985 | . . . . . . 7 ⊢ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ⊆ ℝ | |
4 | ax-resscn 10633 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
5 | 3, 4 | sstri 3902 | . . . . . 6 ⊢ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ⊆ ℂ |
6 | breq2 5037 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (0 ≤ 𝑧 ↔ 0 ≤ 𝑥)) | |
7 | 6 | elrab 3603 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) |
8 | breq2 5037 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → (0 ≤ 𝑧 ↔ 0 ≤ 𝑦)) | |
9 | 8 | elrab 3603 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) |
10 | breq2 5037 | . . . . . . . 8 ⊢ (𝑧 = (𝑥 · 𝑦) → (0 ≤ 𝑧 ↔ 0 ≤ (𝑥 · 𝑦))) | |
11 | remulcl 10661 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ) | |
12 | 11 | ad2ant2r 747 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → (𝑥 · 𝑦) ∈ ℝ) |
13 | mulge0 11197 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → 0 ≤ (𝑥 · 𝑦)) | |
14 | 10, 12, 13 | elrabd 3605 | . . . . . . 7 ⊢ (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧}) |
15 | 7, 9, 14 | syl2anb 601 | . . . . . 6 ⊢ ((𝑥 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧}) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧}) |
16 | 1re 10680 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
17 | 0le1 11202 | . . . . . . 7 ⊢ 0 ≤ 1 | |
18 | breq2 5037 | . . . . . . . 8 ⊢ (𝑧 = 1 → (0 ≤ 𝑧 ↔ 0 ≤ 1)) | |
19 | 18 | elrab 3603 | . . . . . . 7 ⊢ (1 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (1 ∈ ℝ ∧ 0 ≤ 1)) |
20 | 16, 17, 19 | mpbir2an 711 | . . . . . 6 ⊢ 1 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} |
21 | 5, 15, 20 | expcllem 13491 | . . . . 5 ⊢ ((𝐴 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧}) |
22 | breq2 5037 | . . . . . . 7 ⊢ (𝑧 = (𝐴↑𝑁) → (0 ≤ 𝑧 ↔ 0 ≤ (𝐴↑𝑁))) | |
23 | 22 | elrab 3603 | . . . . . 6 ⊢ ((𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ ((𝐴↑𝑁) ∈ ℝ ∧ 0 ≤ (𝐴↑𝑁))) |
24 | 23 | simprbi 501 | . . . . 5 ⊢ ((𝐴↑𝑁) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} → 0 ≤ (𝐴↑𝑁)) |
25 | 21, 24 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ∧ 𝑁 ∈ ℕ0) → 0 ≤ (𝐴↑𝑁)) |
26 | 2, 25 | sylanbr 586 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑁 ∈ ℕ0) → 0 ≤ (𝐴↑𝑁)) |
27 | 26 | 3impa 1108 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝑁 ∈ ℕ0) → 0 ≤ (𝐴↑𝑁)) |
28 | 27 | 3com23 1124 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴↑𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 ∧ w3a 1085 ∈ wcel 2112 {crab 3075 class class class wbr 5033 (class class class)co 7151 ℂcc 10574 ℝcr 10575 0cc0 10576 1c1 10577 · cmul 10581 ≤ cle 10715 ℕ0cn0 11935 ↑cexp 13480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-nn 11676 df-n0 11936 df-z 12022 df-uz 12284 df-seq 13420 df-exp 13481 |
This theorem is referenced by: expge0d 13579 leexp2r 13589 leexp1a 13590 rpnnen2lem4 15619 |
Copyright terms: Public domain | W3C validator |