MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expge0 Structured version   Visualization version   GIF version

Theorem expge0 13516
Description: Nonnegative integer exponentiation with a nonnegative mantissa is nonnegative. (Contributed by NM, 16-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expge0 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴𝑁))

Proof of Theorem expge0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5037 . . . . 5 (𝑧 = 𝐴 → (0 ≤ 𝑧 ↔ 0 ≤ 𝐴))
21elrab 3603 . . . 4 (𝐴 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
3 ssrab2 3985 . . . . . . 7 {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ⊆ ℝ
4 ax-resscn 10633 . . . . . . 7 ℝ ⊆ ℂ
53, 4sstri 3902 . . . . . 6 {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ⊆ ℂ
6 breq2 5037 . . . . . . . 8 (𝑧 = 𝑥 → (0 ≤ 𝑧 ↔ 0 ≤ 𝑥))
76elrab 3603 . . . . . . 7 (𝑥 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
8 breq2 5037 . . . . . . . 8 (𝑧 = 𝑦 → (0 ≤ 𝑧 ↔ 0 ≤ 𝑦))
98elrab 3603 . . . . . . 7 (𝑦 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦))
10 breq2 5037 . . . . . . . 8 (𝑧 = (𝑥 · 𝑦) → (0 ≤ 𝑧 ↔ 0 ≤ (𝑥 · 𝑦)))
11 remulcl 10661 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
1211ad2ant2r 747 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → (𝑥 · 𝑦) ∈ ℝ)
13 mulge0 11197 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → 0 ≤ (𝑥 · 𝑦))
1410, 12, 13elrabd 3605 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦)) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧})
157, 9, 14syl2anb 601 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧}) → (𝑥 · 𝑦) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧})
16 1re 10680 . . . . . . 7 1 ∈ ℝ
17 0le1 11202 . . . . . . 7 0 ≤ 1
18 breq2 5037 . . . . . . . 8 (𝑧 = 1 → (0 ≤ 𝑧 ↔ 0 ≤ 1))
1918elrab 3603 . . . . . . 7 (1 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ (1 ∈ ℝ ∧ 0 ≤ 1))
2016, 17, 19mpbir2an 711 . . . . . 6 1 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧}
215, 15, 20expcllem 13491 . . . . 5 ((𝐴 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧})
22 breq2 5037 . . . . . . 7 (𝑧 = (𝐴𝑁) → (0 ≤ 𝑧 ↔ 0 ≤ (𝐴𝑁)))
2322elrab 3603 . . . . . 6 ((𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ↔ ((𝐴𝑁) ∈ ℝ ∧ 0 ≤ (𝐴𝑁)))
2423simprbi 501 . . . . 5 ((𝐴𝑁) ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} → 0 ≤ (𝐴𝑁))
2521, 24syl 17 . . . 4 ((𝐴 ∈ {𝑧 ∈ ℝ ∣ 0 ≤ 𝑧} ∧ 𝑁 ∈ ℕ0) → 0 ≤ (𝐴𝑁))
262, 25sylanbr 586 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝑁 ∈ ℕ0) → 0 ≤ (𝐴𝑁))
27263impa 1108 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝑁 ∈ ℕ0) → 0 ≤ (𝐴𝑁))
28273com23 1124 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴) → 0 ≤ (𝐴𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400  w3a 1085  wcel 2112  {crab 3075   class class class wbr 5033  (class class class)co 7151  cc 10574  cr 10575  0cc0 10576  1c1 10577   · cmul 10581  cle 10715  0cn0 11935  cexp 13480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10632  ax-resscn 10633  ax-1cn 10634  ax-icn 10635  ax-addcl 10636  ax-addrcl 10637  ax-mulcl 10638  ax-mulrcl 10639  ax-mulcom 10640  ax-addass 10641  ax-mulass 10642  ax-distr 10643  ax-i2m1 10644  ax-1ne0 10645  ax-1rid 10646  ax-rnegex 10647  ax-rrecex 10648  ax-cnre 10649  ax-pre-lttri 10650  ax-pre-lttrn 10651  ax-pre-ltadd 10652  ax-pre-mulgt0 10653
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-er 8300  df-en 8529  df-dom 8530  df-sdom 8531  df-pnf 10716  df-mnf 10717  df-xr 10718  df-ltxr 10719  df-le 10720  df-sub 10911  df-neg 10912  df-nn 11676  df-n0 11936  df-z 12022  df-uz 12284  df-seq 13420  df-exp 13481
This theorem is referenced by:  expge0d  13579  leexp2r  13589  leexp1a  13590  rpnnen2lem4  15619
  Copyright terms: Public domain W3C validator