MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovolmr Structured version   Visualization version   GIF version

Theorem elovolmr 25424
Description: Sufficient condition for elementhood in the set 𝑀. (Contributed by Mario Carneiro, 16-Mar-2014.)
Hypotheses
Ref Expression
elovolm.1 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
elovolmr.2 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
Assertion
Ref Expression
elovolmr ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ((,) ∘ 𝐹)) → sup(ran 𝑆, ℝ*, < ) ∈ 𝑀)
Distinct variable groups:   𝑦,𝑓,𝐴   𝑓,𝐹   𝐴,𝑓   𝑆,𝑓,𝑦
Allowed substitution hints:   𝐹(𝑦)   𝑀(𝑦,𝑓)

Proof of Theorem elovolmr
StepHypRef Expression
1 elovolmlem 25422 . . 3 (𝐹 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2 elovolmr.2 . . . . . . . . 9 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
3 id 22 . . . . . . . . . . . 12 (𝑓 = 𝐹𝑓 = 𝐹)
43eqcomd 2739 . . . . . . . . . . 11 (𝑓 = 𝐹𝐹 = 𝑓)
54coeq2d 5808 . . . . . . . . . 10 (𝑓 = 𝐹 → ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝑓))
65seqeq3d 13923 . . . . . . . . 9 (𝑓 = 𝐹 → seq1( + , ((abs ∘ − ) ∘ 𝐹)) = seq1( + , ((abs ∘ − ) ∘ 𝑓)))
72, 6eqtrid 2780 . . . . . . . 8 (𝑓 = 𝐹𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝑓)))
87rneqd 5884 . . . . . . 7 (𝑓 = 𝐹 → ran 𝑆 = ran seq1( + , ((abs ∘ − ) ∘ 𝑓)))
98supeq1d 9341 . . . . . 6 (𝑓 = 𝐹 → sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
109biantrud 531 . . . . 5 (𝑓 = 𝐹 → (𝐴 ran ((,) ∘ 𝑓) ↔ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))))
11 coeq2 5804 . . . . . . . 8 (𝑓 = 𝐹 → ((,) ∘ 𝑓) = ((,) ∘ 𝐹))
1211rneqd 5884 . . . . . . 7 (𝑓 = 𝐹 → ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝐹))
1312unieqd 4873 . . . . . 6 (𝑓 = 𝐹 ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝐹))
1413sseq2d 3963 . . . . 5 (𝑓 = 𝐹 → (𝐴 ran ((,) ∘ 𝑓) ↔ 𝐴 ran ((,) ∘ 𝐹)))
1510, 14bitr3d 281 . . . 4 (𝑓 = 𝐹 → ((𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ 𝐴 ran ((,) ∘ 𝐹)))
1615rspcev 3573 . . 3 ((𝐹 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝐴 ran ((,) ∘ 𝐹)) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
171, 16sylanbr 582 . 2 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ((,) ∘ 𝐹)) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
18 elovolm.1 . . 3 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
1918elovolm 25423 . 2 (sup(ran 𝑆, ℝ*, < ) ∈ 𝑀 ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
2017, 19sylibr 234 1 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ((,) ∘ 𝐹)) → sup(ran 𝑆, ℝ*, < ) ∈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wrex 3057  {crab 3396  cin 3897  wss 3898   cuni 4860   × cxp 5619  ran crn 5622  ccom 5625  wf 6485  (class class class)co 7355  m cmap 8759  supcsup 9335  cr 11016  1c1 11018   + caddc 11020  *cxr 11156   < clt 11157  cle 11158  cmin 11355  cn 12136  (,)cioo 13252  seqcseq 13915  abscabs 15148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9337  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-z 12480  df-uz 12743  df-rp 12897  df-ico 13258  df-fz 13415  df-seq 13916  df-exp 13976  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150
This theorem is referenced by:  ovollb  25427  ovolshftlem1  25457
  Copyright terms: Public domain W3C validator