| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elovolmr | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for elementhood in the set 𝑀. (Contributed by Mario Carneiro, 16-Mar-2014.) |
| Ref | Expression |
|---|---|
| elovolm.1 | ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} |
| elovolmr.2 | ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) |
| Ref | Expression |
|---|---|
| elovolmr | ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) → sup(ran 𝑆, ℝ*, < ) ∈ 𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elovolmlem 25382 | . . 3 ⊢ (𝐹 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) | |
| 2 | elovolmr.2 | . . . . . . . . 9 ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) | |
| 3 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑓 = 𝐹 → 𝑓 = 𝐹) | |
| 4 | 3 | eqcomd 2736 | . . . . . . . . . . 11 ⊢ (𝑓 = 𝐹 → 𝐹 = 𝑓) |
| 5 | 4 | coeq2d 5829 | . . . . . . . . . 10 ⊢ (𝑓 = 𝐹 → ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝑓)) |
| 6 | 5 | seqeq3d 13981 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → seq1( + , ((abs ∘ − ) ∘ 𝐹)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))) |
| 7 | 2, 6 | eqtrid 2777 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝑓))) |
| 8 | 7 | rneqd 5905 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → ran 𝑆 = ran seq1( + , ((abs ∘ − ) ∘ 𝑓))) |
| 9 | 8 | supeq1d 9404 | . . . . . 6 ⊢ (𝑓 = 𝐹 → sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) |
| 10 | 9 | biantrud 531 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ↔ (𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))) |
| 11 | coeq2 5825 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → ((,) ∘ 𝑓) = ((,) ∘ 𝐹)) | |
| 12 | 11 | rneqd 5905 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝐹)) |
| 13 | 12 | unieqd 4887 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ∪ ran ((,) ∘ 𝑓) = ∪ ran ((,) ∘ 𝐹)) |
| 14 | 13 | sseq2d 3982 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ↔ 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹))) |
| 15 | 10, 14 | bitr3d 281 | . . . 4 ⊢ (𝑓 = 𝐹 → ((𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹))) |
| 16 | 15 | rspcev 3591 | . . 3 ⊢ ((𝐹 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))) |
| 17 | 1, 16 | sylanbr 582 | . 2 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))) |
| 18 | elovolm.1 | . . 3 ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} | |
| 19 | 18 | elovolm 25383 | . 2 ⊢ (sup(ran 𝑆, ℝ*, < ) ∈ 𝑀 ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))) |
| 20 | 17, 19 | sylibr 234 | 1 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) → sup(ran 𝑆, ℝ*, < ) ∈ 𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 {crab 3408 ∩ cin 3916 ⊆ wss 3917 ∪ cuni 4874 × cxp 5639 ran crn 5642 ∘ ccom 5645 ⟶wf 6510 (class class class)co 7390 ↑m cmap 8802 supcsup 9398 ℝcr 11074 1c1 11076 + caddc 11078 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 − cmin 11412 ℕcn 12193 (,)cioo 13313 seqcseq 13973 abscabs 15207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-ico 13319 df-fz 13476 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 |
| This theorem is referenced by: ovollb 25387 ovolshftlem1 25417 |
| Copyright terms: Public domain | W3C validator |