MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovolmr Structured version   Visualization version   GIF version

Theorem elovolmr 24080
Description: Sufficient condition for elementhood in the set 𝑀. (Contributed by Mario Carneiro, 16-Mar-2014.)
Hypotheses
Ref Expression
elovolm.1 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
elovolmr.2 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
Assertion
Ref Expression
elovolmr ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ((,) ∘ 𝐹)) → sup(ran 𝑆, ℝ*, < ) ∈ 𝑀)
Distinct variable groups:   𝑦,𝑓,𝐴   𝑓,𝐹   𝐴,𝑓   𝑆,𝑓,𝑦
Allowed substitution hints:   𝐹(𝑦)   𝑀(𝑦,𝑓)

Proof of Theorem elovolmr
StepHypRef Expression
1 elovolmlem 24078 . . 3 (𝐹 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2 elovolmr.2 . . . . . . . . 9 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
3 id 22 . . . . . . . . . . . 12 (𝑓 = 𝐹𝑓 = 𝐹)
43eqcomd 2804 . . . . . . . . . . 11 (𝑓 = 𝐹𝐹 = 𝑓)
54coeq2d 5697 . . . . . . . . . 10 (𝑓 = 𝐹 → ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝑓))
65seqeq3d 13372 . . . . . . . . 9 (𝑓 = 𝐹 → seq1( + , ((abs ∘ − ) ∘ 𝐹)) = seq1( + , ((abs ∘ − ) ∘ 𝑓)))
72, 6syl5eq 2845 . . . . . . . 8 (𝑓 = 𝐹𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝑓)))
87rneqd 5772 . . . . . . 7 (𝑓 = 𝐹 → ran 𝑆 = ran seq1( + , ((abs ∘ − ) ∘ 𝑓)))
98supeq1d 8894 . . . . . 6 (𝑓 = 𝐹 → sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
109biantrud 535 . . . . 5 (𝑓 = 𝐹 → (𝐴 ran ((,) ∘ 𝑓) ↔ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))))
11 coeq2 5693 . . . . . . . 8 (𝑓 = 𝐹 → ((,) ∘ 𝑓) = ((,) ∘ 𝐹))
1211rneqd 5772 . . . . . . 7 (𝑓 = 𝐹 → ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝐹))
1312unieqd 4814 . . . . . 6 (𝑓 = 𝐹 ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝐹))
1413sseq2d 3947 . . . . 5 (𝑓 = 𝐹 → (𝐴 ran ((,) ∘ 𝑓) ↔ 𝐴 ran ((,) ∘ 𝐹)))
1510, 14bitr3d 284 . . . 4 (𝑓 = 𝐹 → ((𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ 𝐴 ran ((,) ∘ 𝐹)))
1615rspcev 3571 . . 3 ((𝐹 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝐴 ran ((,) ∘ 𝐹)) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
171, 16sylanbr 585 . 2 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ((,) ∘ 𝐹)) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
18 elovolm.1 . . 3 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
1918elovolm 24079 . 2 (sup(ran 𝑆, ℝ*, < ) ∈ 𝑀 ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
2017, 19sylibr 237 1 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ((,) ∘ 𝐹)) → sup(ran 𝑆, ℝ*, < ) ∈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wrex 3107  {crab 3110  cin 3880  wss 3881   cuni 4800   × cxp 5517  ran crn 5520  ccom 5523  wf 6320  (class class class)co 7135  m cmap 8389  supcsup 8888  cr 10525  1c1 10527   + caddc 10529  *cxr 10663   < clt 10664  cle 10665  cmin 10859  cn 11625  (,)cioo 12726  seqcseq 13364  abscabs 14585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587
This theorem is referenced by:  ovollb  24083  ovolshftlem1  24113
  Copyright terms: Public domain W3C validator