| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elovolmr | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for elementhood in the set 𝑀. (Contributed by Mario Carneiro, 16-Mar-2014.) |
| Ref | Expression |
|---|---|
| elovolm.1 | ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} |
| elovolmr.2 | ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) |
| Ref | Expression |
|---|---|
| elovolmr | ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) → sup(ran 𝑆, ℝ*, < ) ∈ 𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elovolmlem 25422 | . . 3 ⊢ (𝐹 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) | |
| 2 | elovolmr.2 | . . . . . . . . 9 ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) | |
| 3 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑓 = 𝐹 → 𝑓 = 𝐹) | |
| 4 | 3 | eqcomd 2739 | . . . . . . . . . . 11 ⊢ (𝑓 = 𝐹 → 𝐹 = 𝑓) |
| 5 | 4 | coeq2d 5808 | . . . . . . . . . 10 ⊢ (𝑓 = 𝐹 → ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝑓)) |
| 6 | 5 | seqeq3d 13923 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → seq1( + , ((abs ∘ − ) ∘ 𝐹)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))) |
| 7 | 2, 6 | eqtrid 2780 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝑓))) |
| 8 | 7 | rneqd 5884 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → ran 𝑆 = ran seq1( + , ((abs ∘ − ) ∘ 𝑓))) |
| 9 | 8 | supeq1d 9341 | . . . . . 6 ⊢ (𝑓 = 𝐹 → sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) |
| 10 | 9 | biantrud 531 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ↔ (𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))) |
| 11 | coeq2 5804 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → ((,) ∘ 𝑓) = ((,) ∘ 𝐹)) | |
| 12 | 11 | rneqd 5884 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝐹)) |
| 13 | 12 | unieqd 4873 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ∪ ran ((,) ∘ 𝑓) = ∪ ran ((,) ∘ 𝐹)) |
| 14 | 13 | sseq2d 3963 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ↔ 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹))) |
| 15 | 10, 14 | bitr3d 281 | . . . 4 ⊢ (𝑓 = 𝐹 → ((𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹))) |
| 16 | 15 | rspcev 3573 | . . 3 ⊢ ((𝐹 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))) |
| 17 | 1, 16 | sylanbr 582 | . 2 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))) |
| 18 | elovolm.1 | . . 3 ⊢ 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} | |
| 19 | 18 | elovolm 25423 | . 2 ⊢ (sup(ran 𝑆, ℝ*, < ) ∈ 𝑀 ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))) |
| 20 | 17, 19 | sylibr 234 | 1 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) → sup(ran 𝑆, ℝ*, < ) ∈ 𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 {crab 3396 ∩ cin 3897 ⊆ wss 3898 ∪ cuni 4860 × cxp 5619 ran crn 5622 ∘ ccom 5625 ⟶wf 6485 (class class class)co 7355 ↑m cmap 8759 supcsup 9335 ℝcr 11016 1c1 11018 + caddc 11020 ℝ*cxr 11156 < clt 11157 ≤ cle 11158 − cmin 11355 ℕcn 12136 (,)cioo 13252 seqcseq 13915 abscabs 15148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9337 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-n0 12393 df-z 12480 df-uz 12743 df-rp 12897 df-ico 13258 df-fz 13415 df-seq 13916 df-exp 13976 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 |
| This theorem is referenced by: ovollb 25427 ovolshftlem1 25457 |
| Copyright terms: Public domain | W3C validator |