MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovolmr Structured version   Visualization version   GIF version

Theorem elovolmr 25393
Description: Sufficient condition for elementhood in the set 𝑀. (Contributed by Mario Carneiro, 16-Mar-2014.)
Hypotheses
Ref Expression
elovolm.1 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
elovolmr.2 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
Assertion
Ref Expression
elovolmr ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ((,) ∘ 𝐹)) → sup(ran 𝑆, ℝ*, < ) ∈ 𝑀)
Distinct variable groups:   𝑦,𝑓,𝐴   𝑓,𝐹   𝐴,𝑓   𝑆,𝑓,𝑦
Allowed substitution hints:   𝐹(𝑦)   𝑀(𝑦,𝑓)

Proof of Theorem elovolmr
StepHypRef Expression
1 elovolmlem 25391 . . 3 (𝐹 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2 elovolmr.2 . . . . . . . . 9 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
3 id 22 . . . . . . . . . . . 12 (𝑓 = 𝐹𝑓 = 𝐹)
43eqcomd 2735 . . . . . . . . . . 11 (𝑓 = 𝐹𝐹 = 𝑓)
54coeq2d 5809 . . . . . . . . . 10 (𝑓 = 𝐹 → ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝑓))
65seqeq3d 13934 . . . . . . . . 9 (𝑓 = 𝐹 → seq1( + , ((abs ∘ − ) ∘ 𝐹)) = seq1( + , ((abs ∘ − ) ∘ 𝑓)))
72, 6eqtrid 2776 . . . . . . . 8 (𝑓 = 𝐹𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝑓)))
87rneqd 5884 . . . . . . 7 (𝑓 = 𝐹 → ran 𝑆 = ran seq1( + , ((abs ∘ − ) ∘ 𝑓)))
98supeq1d 9355 . . . . . 6 (𝑓 = 𝐹 → sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
109biantrud 531 . . . . 5 (𝑓 = 𝐹 → (𝐴 ran ((,) ∘ 𝑓) ↔ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))))
11 coeq2 5805 . . . . . . . 8 (𝑓 = 𝐹 → ((,) ∘ 𝑓) = ((,) ∘ 𝐹))
1211rneqd 5884 . . . . . . 7 (𝑓 = 𝐹 → ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝐹))
1312unieqd 4874 . . . . . 6 (𝑓 = 𝐹 ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝐹))
1413sseq2d 3970 . . . . 5 (𝑓 = 𝐹 → (𝐴 ran ((,) ∘ 𝑓) ↔ 𝐴 ran ((,) ∘ 𝐹)))
1510, 14bitr3d 281 . . . 4 (𝑓 = 𝐹 → ((𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ 𝐴 ran ((,) ∘ 𝐹)))
1615rspcev 3579 . . 3 ((𝐹 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝐴 ran ((,) ∘ 𝐹)) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
171, 16sylanbr 582 . 2 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ((,) ∘ 𝐹)) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
18 elovolm.1 . . 3 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
1918elovolm 25392 . 2 (sup(ran 𝑆, ℝ*, < ) ∈ 𝑀 ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
2017, 19sylibr 234 1 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ((,) ∘ 𝐹)) → sup(ran 𝑆, ℝ*, < ) ∈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  {crab 3396  cin 3904  wss 3905   cuni 4861   × cxp 5621  ran crn 5624  ccom 5627  wf 6482  (class class class)co 7353  m cmap 8760  supcsup 9349  cr 11027  1c1 11029   + caddc 11031  *cxr 11167   < clt 11168  cle 11169  cmin 11365  cn 12146  (,)cioo 13266  seqcseq 13926  abscabs 15159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-ico 13272  df-fz 13429  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161
This theorem is referenced by:  ovollb  25396  ovolshftlem1  25426
  Copyright terms: Public domain W3C validator