Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovolmr Structured version   Visualization version   GIF version

Theorem elovolmr 24071
 Description: Sufficient condition for elementhood in the set 𝑀. (Contributed by Mario Carneiro, 16-Mar-2014.)
Hypotheses
Ref Expression
elovolm.1 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
elovolmr.2 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
Assertion
Ref Expression
elovolmr ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ((,) ∘ 𝐹)) → sup(ran 𝑆, ℝ*, < ) ∈ 𝑀)
Distinct variable groups:   𝑦,𝑓,𝐴   𝑓,𝐹   𝐴,𝑓   𝑆,𝑓,𝑦
Allowed substitution hints:   𝐹(𝑦)   𝑀(𝑦,𝑓)

Proof of Theorem elovolmr
StepHypRef Expression
1 elovolmlem 24069 . . 3 (𝐹 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2 elovolmr.2 . . . . . . . . 9 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
3 id 22 . . . . . . . . . . . 12 (𝑓 = 𝐹𝑓 = 𝐹)
43eqcomd 2827 . . . . . . . . . . 11 (𝑓 = 𝐹𝐹 = 𝑓)
54coeq2d 5727 . . . . . . . . . 10 (𝑓 = 𝐹 → ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝑓))
65seqeq3d 13371 . . . . . . . . 9 (𝑓 = 𝐹 → seq1( + , ((abs ∘ − ) ∘ 𝐹)) = seq1( + , ((abs ∘ − ) ∘ 𝑓)))
72, 6syl5eq 2868 . . . . . . . 8 (𝑓 = 𝐹𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝑓)))
87rneqd 5802 . . . . . . 7 (𝑓 = 𝐹 → ran 𝑆 = ran seq1( + , ((abs ∘ − ) ∘ 𝑓)))
98supeq1d 8904 . . . . . 6 (𝑓 = 𝐹 → sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
109biantrud 534 . . . . 5 (𝑓 = 𝐹 → (𝐴 ran ((,) ∘ 𝑓) ↔ (𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))))
11 coeq2 5723 . . . . . . . 8 (𝑓 = 𝐹 → ((,) ∘ 𝑓) = ((,) ∘ 𝐹))
1211rneqd 5802 . . . . . . 7 (𝑓 = 𝐹 → ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝐹))
1312unieqd 4841 . . . . . 6 (𝑓 = 𝐹 ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝐹))
1413sseq2d 3998 . . . . 5 (𝑓 = 𝐹 → (𝐴 ran ((,) ∘ 𝑓) ↔ 𝐴 ran ((,) ∘ 𝐹)))
1510, 14bitr3d 283 . . . 4 (𝑓 = 𝐹 → ((𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ 𝐴 ran ((,) ∘ 𝐹)))
1615rspcev 3622 . . 3 ((𝐹 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝐴 ran ((,) ∘ 𝐹)) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
171, 16sylanbr 584 . 2 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ((,) ∘ 𝐹)) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
18 elovolm.1 . . 3 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
1918elovolm 24070 . 2 (sup(ran 𝑆, ℝ*, < ) ∈ 𝑀 ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran 𝑆, ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
2017, 19sylibr 236 1 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ((,) ∘ 𝐹)) → sup(ran 𝑆, ℝ*, < ) ∈ 𝑀)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   = wceq 1533   ∈ wcel 2110  ∃wrex 3139  {crab 3142   ∩ cin 3934   ⊆ wss 3935  ∪ cuni 4831   × cxp 5547  ran crn 5550   ∘ ccom 5553  ⟶wf 6345  (class class class)co 7150   ↑m cmap 8400  supcsup 8898  ℝcr 10530  1c1 10532   + caddc 10534  ℝ*cxr 10668   < clt 10669   ≤ cle 10670   − cmin 10864  ℕcn 11632  (,)cioo 12732  seqcseq 13363  abscabs 14587 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-ico 12738  df-fz 12887  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589 This theorem is referenced by:  ovollb  24074  ovolshftlem1  24104
 Copyright terms: Public domain W3C validator