Step | Hyp | Ref
| Expression |
1 | | simpl 483 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | tendoicl.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
3 | | tendoicl.t |
. . . 4
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
4 | | tendoicl.e |
. . . 4
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
5 | | tendoicl.i |
. . . 4
⊢ 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) |
6 | 2, 3, 4, 5 | tendoicl 38810 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝐼‘𝑆) ∈ 𝐸) |
7 | | simpr 485 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → 𝑆 ∈ 𝐸) |
8 | | tendoi.p |
. . . 4
⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) |
9 | 2, 3, 4, 8 | tendoplcl 38795 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐼‘𝑆) ∈ 𝐸 ∧ 𝑆 ∈ 𝐸) → ((𝐼‘𝑆)𝑃𝑆) ∈ 𝐸) |
10 | 1, 6, 7, 9 | syl3anc 1370 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → ((𝐼‘𝑆)𝑃𝑆) ∈ 𝐸) |
11 | | tendoi.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
12 | | tendoi.o |
. . . 4
⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
13 | 11, 2, 3, 4, 12 | tendo0cl 38804 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) |
14 | 13 | adantr 481 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → 𝑂 ∈ 𝐸) |
15 | 5, 3 | tendoi2 38809 |
. . . . . . 7
⊢ ((𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → ((𝐼‘𝑆)‘𝑔) = ◡(𝑆‘𝑔)) |
16 | 15 | adantll 711 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → ((𝐼‘𝑆)‘𝑔) = ◡(𝑆‘𝑔)) |
17 | 16 | coeq1d 5770 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (((𝐼‘𝑆)‘𝑔) ∘ (𝑆‘𝑔)) = (◡(𝑆‘𝑔) ∘ (𝑆‘𝑔))) |
18 | | simpll 764 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
19 | 2, 3, 4 | tendocl 38781 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → (𝑆‘𝑔) ∈ 𝑇) |
20 | 19 | 3expa 1117 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝑆‘𝑔) ∈ 𝑇) |
21 | 11, 2, 3 | ltrn1o 38138 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆‘𝑔) ∈ 𝑇) → (𝑆‘𝑔):𝐵–1-1-onto→𝐵) |
22 | 18, 20, 21 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝑆‘𝑔):𝐵–1-1-onto→𝐵) |
23 | | f1ococnv1 6745 |
. . . . . 6
⊢ ((𝑆‘𝑔):𝐵–1-1-onto→𝐵 → (◡(𝑆‘𝑔) ∘ (𝑆‘𝑔)) = ( I ↾ 𝐵)) |
24 | 22, 23 | syl 17 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (◡(𝑆‘𝑔) ∘ (𝑆‘𝑔)) = ( I ↾ 𝐵)) |
25 | 17, 24 | eqtrd 2778 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (((𝐼‘𝑆)‘𝑔) ∘ (𝑆‘𝑔)) = ( I ↾ 𝐵)) |
26 | 6 | adantr 481 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝐼‘𝑆) ∈ 𝐸) |
27 | | simplr 766 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → 𝑆 ∈ 𝐸) |
28 | | simpr 485 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → 𝑔 ∈ 𝑇) |
29 | 8, 3 | tendopl2 38791 |
. . . . 5
⊢ (((𝐼‘𝑆) ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → (((𝐼‘𝑆)𝑃𝑆)‘𝑔) = (((𝐼‘𝑆)‘𝑔) ∘ (𝑆‘𝑔))) |
30 | 26, 27, 28, 29 | syl3anc 1370 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (((𝐼‘𝑆)𝑃𝑆)‘𝑔) = (((𝐼‘𝑆)‘𝑔) ∘ (𝑆‘𝑔))) |
31 | 12, 11 | tendo02 38801 |
. . . . 5
⊢ (𝑔 ∈ 𝑇 → (𝑂‘𝑔) = ( I ↾ 𝐵)) |
32 | 31 | adantl 482 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝑂‘𝑔) = ( I ↾ 𝐵)) |
33 | 25, 30, 32 | 3eqtr4d 2788 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (((𝐼‘𝑆)𝑃𝑆)‘𝑔) = (𝑂‘𝑔)) |
34 | 33 | ralrimiva 3103 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → ∀𝑔 ∈ 𝑇 (((𝐼‘𝑆)𝑃𝑆)‘𝑔) = (𝑂‘𝑔)) |
35 | 2, 3, 4 | tendoeq1 38778 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (((𝐼‘𝑆)𝑃𝑆) ∈ 𝐸 ∧ 𝑂 ∈ 𝐸) ∧ ∀𝑔 ∈ 𝑇 (((𝐼‘𝑆)𝑃𝑆)‘𝑔) = (𝑂‘𝑔)) → ((𝐼‘𝑆)𝑃𝑆) = 𝑂) |
36 | 1, 10, 14, 34, 35 | syl121anc 1374 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → ((𝐼‘𝑆)𝑃𝑆) = 𝑂) |