Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoipl Structured version   Visualization version   GIF version

Theorem tendoipl 39260
Description: Property of the additive inverse endomorphism. (Contributed by NM, 12-Jun-2013.)
Hypotheses
Ref Expression
tendoicl.h 𝐻 = (LHyp‘𝐾)
tendoicl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoicl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendoicl.i 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
tendoi.b 𝐵 = (Base‘𝐾)
tendoi.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
tendoi.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
tendoipl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → ((𝐼𝑆)𝑃𝑆) = 𝑂)
Distinct variable groups:   𝐸,𝑠   𝑓,𝑠,𝑇   𝑓,𝑊,𝑠   𝐵,𝑓   𝑡,𝐸   𝑓,𝐻   𝑓,𝐾   𝑡,𝑓,𝑠,𝑇   𝑡,𝑊
Allowed substitution hints:   𝐵(𝑡,𝑠)   𝑃(𝑡,𝑓,𝑠)   𝑆(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐻(𝑡,𝑠)   𝐼(𝑡,𝑓,𝑠)   𝐾(𝑡,𝑠)   𝑂(𝑡,𝑓,𝑠)

Proof of Theorem tendoipl
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simpl 483 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 tendoicl.h . . . 4 𝐻 = (LHyp‘𝐾)
3 tendoicl.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 tendoicl.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
5 tendoicl.i . . . 4 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
62, 3, 4, 5tendoicl 39259 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐼𝑆) ∈ 𝐸)
7 simpr 485 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → 𝑆𝐸)
8 tendoi.p . . . 4 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
92, 3, 4, 8tendoplcl 39244 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐼𝑆) ∈ 𝐸𝑆𝐸) → ((𝐼𝑆)𝑃𝑆) ∈ 𝐸)
101, 6, 7, 9syl3anc 1371 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → ((𝐼𝑆)𝑃𝑆) ∈ 𝐸)
11 tendoi.b . . . 4 𝐵 = (Base‘𝐾)
12 tendoi.o . . . 4 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
1311, 2, 3, 4, 12tendo0cl 39253 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
1413adantr 481 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → 𝑂𝐸)
155, 3tendoi2 39258 . . . . . . 7 ((𝑆𝐸𝑔𝑇) → ((𝐼𝑆)‘𝑔) = (𝑆𝑔))
1615adantll 712 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → ((𝐼𝑆)‘𝑔) = (𝑆𝑔))
1716coeq1d 5817 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (((𝐼𝑆)‘𝑔) ∘ (𝑆𝑔)) = ((𝑆𝑔) ∘ (𝑆𝑔)))
18 simpll 765 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
192, 3, 4tendocl 39230 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑔𝑇) → (𝑆𝑔) ∈ 𝑇)
20193expa 1118 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝑆𝑔) ∈ 𝑇)
2111, 2, 3ltrn1o 38587 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝑔) ∈ 𝑇) → (𝑆𝑔):𝐵1-1-onto𝐵)
2218, 20, 21syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝑆𝑔):𝐵1-1-onto𝐵)
23 f1ococnv1 6813 . . . . . 6 ((𝑆𝑔):𝐵1-1-onto𝐵 → ((𝑆𝑔) ∘ (𝑆𝑔)) = ( I ↾ 𝐵))
2422, 23syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → ((𝑆𝑔) ∘ (𝑆𝑔)) = ( I ↾ 𝐵))
2517, 24eqtrd 2776 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (((𝐼𝑆)‘𝑔) ∘ (𝑆𝑔)) = ( I ↾ 𝐵))
266adantr 481 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝐼𝑆) ∈ 𝐸)
27 simplr 767 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → 𝑆𝐸)
28 simpr 485 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → 𝑔𝑇)
298, 3tendopl2 39240 . . . . 5 (((𝐼𝑆) ∈ 𝐸𝑆𝐸𝑔𝑇) → (((𝐼𝑆)𝑃𝑆)‘𝑔) = (((𝐼𝑆)‘𝑔) ∘ (𝑆𝑔)))
3026, 27, 28, 29syl3anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (((𝐼𝑆)𝑃𝑆)‘𝑔) = (((𝐼𝑆)‘𝑔) ∘ (𝑆𝑔)))
3112, 11tendo02 39250 . . . . 5 (𝑔𝑇 → (𝑂𝑔) = ( I ↾ 𝐵))
3231adantl 482 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝑂𝑔) = ( I ↾ 𝐵))
3325, 30, 323eqtr4d 2786 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (((𝐼𝑆)𝑃𝑆)‘𝑔) = (𝑂𝑔))
3433ralrimiva 3143 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → ∀𝑔𝑇 (((𝐼𝑆)𝑃𝑆)‘𝑔) = (𝑂𝑔))
352, 3, 4tendoeq1 39227 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((𝐼𝑆)𝑃𝑆) ∈ 𝐸𝑂𝐸) ∧ ∀𝑔𝑇 (((𝐼𝑆)𝑃𝑆)‘𝑔) = (𝑂𝑔)) → ((𝐼𝑆)𝑃𝑆) = 𝑂)
361, 10, 14, 34, 35syl121anc 1375 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → ((𝐼𝑆)𝑃𝑆) = 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3064  cmpt 5188   I cid 5530  ccnv 5632  cres 5635  ccom 5637  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  cmpo 7359  Basecbs 17083  HLchlt 37812  LHypclh 38447  LTrncltrn 38564  TEndoctendo 39215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-riotaBAD 37415
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-undef 8204  df-map 8767  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-p1 18315  df-lat 18321  df-clat 18388  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-llines 37961  df-lplanes 37962  df-lvols 37963  df-lines 37964  df-psubsp 37966  df-pmap 37967  df-padd 38259  df-lhyp 38451  df-laut 38452  df-ldil 38567  df-ltrn 38568  df-trl 38622  df-tendo 39218
This theorem is referenced by:  tendoipl2  39261  erngdvlem1  39451  erngdvlem1-rN  39459
  Copyright terms: Public domain W3C validator