Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoipl Structured version   Visualization version   GIF version

Theorem tendoipl 36873
Description: Property of the additive inverse endomorphism. (Contributed by NM, 12-Jun-2013.)
Hypotheses
Ref Expression
tendoicl.h 𝐻 = (LHyp‘𝐾)
tendoicl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoicl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendoicl.i 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
tendoi.b 𝐵 = (Base‘𝐾)
tendoi.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
tendoi.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
tendoipl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → ((𝐼𝑆)𝑃𝑆) = 𝑂)
Distinct variable groups:   𝐸,𝑠   𝑓,𝑠,𝑇   𝑓,𝑊,𝑠   𝐵,𝑓   𝑡,𝐸   𝑓,𝐻   𝑓,𝐾   𝑡,𝑓,𝑠,𝑇   𝑡,𝑊
Allowed substitution hints:   𝐵(𝑡,𝑠)   𝑃(𝑡,𝑓,𝑠)   𝑆(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐻(𝑡,𝑠)   𝐼(𝑡,𝑓,𝑠)   𝐾(𝑡,𝑠)   𝑂(𝑡,𝑓,𝑠)

Proof of Theorem tendoipl
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simpl 476 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 tendoicl.h . . . 4 𝐻 = (LHyp‘𝐾)
3 tendoicl.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 tendoicl.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
5 tendoicl.i . . . 4 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
62, 3, 4, 5tendoicl 36872 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐼𝑆) ∈ 𝐸)
7 simpr 479 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → 𝑆𝐸)
8 tendoi.p . . . 4 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
92, 3, 4, 8tendoplcl 36857 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐼𝑆) ∈ 𝐸𝑆𝐸) → ((𝐼𝑆)𝑃𝑆) ∈ 𝐸)
101, 6, 7, 9syl3anc 1496 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → ((𝐼𝑆)𝑃𝑆) ∈ 𝐸)
11 tendoi.b . . . 4 𝐵 = (Base‘𝐾)
12 tendoi.o . . . 4 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
1311, 2, 3, 4, 12tendo0cl 36866 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
1413adantr 474 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → 𝑂𝐸)
155, 3tendoi2 36871 . . . . . . 7 ((𝑆𝐸𝑔𝑇) → ((𝐼𝑆)‘𝑔) = (𝑆𝑔))
1615adantll 707 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → ((𝐼𝑆)‘𝑔) = (𝑆𝑔))
1716coeq1d 5517 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (((𝐼𝑆)‘𝑔) ∘ (𝑆𝑔)) = ((𝑆𝑔) ∘ (𝑆𝑔)))
18 simpll 785 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
192, 3, 4tendocl 36843 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑔𝑇) → (𝑆𝑔) ∈ 𝑇)
20193expa 1153 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝑆𝑔) ∈ 𝑇)
2111, 2, 3ltrn1o 36200 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝑔) ∈ 𝑇) → (𝑆𝑔):𝐵1-1-onto𝐵)
2218, 20, 21syl2anc 581 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝑆𝑔):𝐵1-1-onto𝐵)
23 f1ococnv1 6407 . . . . . 6 ((𝑆𝑔):𝐵1-1-onto𝐵 → ((𝑆𝑔) ∘ (𝑆𝑔)) = ( I ↾ 𝐵))
2422, 23syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → ((𝑆𝑔) ∘ (𝑆𝑔)) = ( I ↾ 𝐵))
2517, 24eqtrd 2862 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (((𝐼𝑆)‘𝑔) ∘ (𝑆𝑔)) = ( I ↾ 𝐵))
266adantr 474 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝐼𝑆) ∈ 𝐸)
27 simplr 787 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → 𝑆𝐸)
28 simpr 479 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → 𝑔𝑇)
298, 3tendopl2 36853 . . . . 5 (((𝐼𝑆) ∈ 𝐸𝑆𝐸𝑔𝑇) → (((𝐼𝑆)𝑃𝑆)‘𝑔) = (((𝐼𝑆)‘𝑔) ∘ (𝑆𝑔)))
3026, 27, 28, 29syl3anc 1496 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (((𝐼𝑆)𝑃𝑆)‘𝑔) = (((𝐼𝑆)‘𝑔) ∘ (𝑆𝑔)))
3112, 11tendo02 36863 . . . . 5 (𝑔𝑇 → (𝑂𝑔) = ( I ↾ 𝐵))
3231adantl 475 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝑂𝑔) = ( I ↾ 𝐵))
3325, 30, 323eqtr4d 2872 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (((𝐼𝑆)𝑃𝑆)‘𝑔) = (𝑂𝑔))
3433ralrimiva 3176 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → ∀𝑔𝑇 (((𝐼𝑆)𝑃𝑆)‘𝑔) = (𝑂𝑔))
352, 3, 4tendoeq1 36840 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((𝐼𝑆)𝑃𝑆) ∈ 𝐸𝑂𝐸) ∧ ∀𝑔𝑇 (((𝐼𝑆)𝑃𝑆)‘𝑔) = (𝑂𝑔)) → ((𝐼𝑆)𝑃𝑆) = 𝑂)
361, 10, 14, 34, 35syl121anc 1500 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → ((𝐼𝑆)𝑃𝑆) = 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  wral 3118  cmpt 4953   I cid 5250  ccnv 5342  cres 5345  ccom 5347  1-1-ontowf1o 6123  cfv 6124  (class class class)co 6906  cmpt2 6908  Basecbs 16223  HLchlt 35426  LHypclh 36060  LTrncltrn 36177  TEndoctendo 36828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-riotaBAD 35029
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4660  df-iun 4743  df-iin 4744  df-br 4875  df-opab 4937  df-mpt 4954  df-id 5251  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-1st 7429  df-2nd 7430  df-undef 7665  df-map 8125  df-proset 17282  df-poset 17300  df-plt 17312  df-lub 17328  df-glb 17329  df-join 17330  df-meet 17331  df-p0 17393  df-p1 17394  df-lat 17400  df-clat 17462  df-oposet 35252  df-ol 35254  df-oml 35255  df-covers 35342  df-ats 35343  df-atl 35374  df-cvlat 35398  df-hlat 35427  df-llines 35574  df-lplanes 35575  df-lvols 35576  df-lines 35577  df-psubsp 35579  df-pmap 35580  df-padd 35872  df-lhyp 36064  df-laut 36065  df-ldil 36180  df-ltrn 36181  df-trl 36235  df-tendo 36831
This theorem is referenced by:  tendoipl2  36874  erngdvlem1  37064  erngdvlem1-rN  37072
  Copyright terms: Public domain W3C validator