Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoipl Structured version   Visualization version   GIF version

Theorem tendoipl 40181
Description: Property of the additive inverse endomorphism. (Contributed by NM, 12-Jun-2013.)
Hypotheses
Ref Expression
tendoicl.h 𝐻 = (LHypβ€˜πΎ)
tendoicl.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
tendoicl.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
tendoicl.i 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ β—‘(π‘ β€˜π‘“)))
tendoi.b 𝐡 = (Baseβ€˜πΎ)
tendoi.p 𝑃 = (𝑠 ∈ 𝐸, 𝑑 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((π‘ β€˜π‘“) ∘ (π‘‘β€˜π‘“))))
tendoi.o 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
Assertion
Ref Expression
tendoipl (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) β†’ ((πΌβ€˜π‘†)𝑃𝑆) = 𝑂)
Distinct variable groups:   𝐸,𝑠   𝑓,𝑠,𝑇   𝑓,π‘Š,𝑠   𝐡,𝑓   𝑑,𝐸   𝑓,𝐻   𝑓,𝐾   𝑑,𝑓,𝑠,𝑇   𝑑,π‘Š
Allowed substitution hints:   𝐡(𝑑,𝑠)   𝑃(𝑑,𝑓,𝑠)   𝑆(𝑑,𝑓,𝑠)   𝐸(𝑓)   𝐻(𝑑,𝑠)   𝐼(𝑑,𝑓,𝑠)   𝐾(𝑑,𝑠)   𝑂(𝑑,𝑓,𝑠)

Proof of Theorem tendoipl
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 tendoicl.h . . . 4 𝐻 = (LHypβ€˜πΎ)
3 tendoicl.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
4 tendoicl.e . . . 4 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
5 tendoicl.i . . . 4 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ β—‘(π‘ β€˜π‘“)))
62, 3, 4, 5tendoicl 40180 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) β†’ (πΌβ€˜π‘†) ∈ 𝐸)
7 simpr 484 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) β†’ 𝑆 ∈ 𝐸)
8 tendoi.p . . . 4 𝑃 = (𝑠 ∈ 𝐸, 𝑑 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((π‘ β€˜π‘“) ∘ (π‘‘β€˜π‘“))))
92, 3, 4, 8tendoplcl 40165 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (πΌβ€˜π‘†) ∈ 𝐸 ∧ 𝑆 ∈ 𝐸) β†’ ((πΌβ€˜π‘†)𝑃𝑆) ∈ 𝐸)
101, 6, 7, 9syl3anc 1368 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) β†’ ((πΌβ€˜π‘†)𝑃𝑆) ∈ 𝐸)
11 tendoi.b . . . 4 𝐡 = (Baseβ€˜πΎ)
12 tendoi.o . . . 4 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
1311, 2, 3, 4, 12tendo0cl 40174 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝑂 ∈ 𝐸)
1413adantr 480 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) β†’ 𝑂 ∈ 𝐸)
155, 3tendoi2 40179 . . . . . . 7 ((𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) β†’ ((πΌβ€˜π‘†)β€˜π‘”) = β—‘(π‘†β€˜π‘”))
1615adantll 711 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ ((πΌβ€˜π‘†)β€˜π‘”) = β—‘(π‘†β€˜π‘”))
1716coeq1d 5855 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ (((πΌβ€˜π‘†)β€˜π‘”) ∘ (π‘†β€˜π‘”)) = (β—‘(π‘†β€˜π‘”) ∘ (π‘†β€˜π‘”)))
18 simpll 764 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
192, 3, 4tendocl 40151 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) β†’ (π‘†β€˜π‘”) ∈ 𝑇)
20193expa 1115 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ (π‘†β€˜π‘”) ∈ 𝑇)
2111, 2, 3ltrn1o 39508 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘†β€˜π‘”) ∈ 𝑇) β†’ (π‘†β€˜π‘”):𝐡–1-1-onto→𝐡)
2218, 20, 21syl2anc 583 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ (π‘†β€˜π‘”):𝐡–1-1-onto→𝐡)
23 f1ococnv1 6856 . . . . . 6 ((π‘†β€˜π‘”):𝐡–1-1-onto→𝐡 β†’ (β—‘(π‘†β€˜π‘”) ∘ (π‘†β€˜π‘”)) = ( I β†Ύ 𝐡))
2422, 23syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ (β—‘(π‘†β€˜π‘”) ∘ (π‘†β€˜π‘”)) = ( I β†Ύ 𝐡))
2517, 24eqtrd 2766 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ (((πΌβ€˜π‘†)β€˜π‘”) ∘ (π‘†β€˜π‘”)) = ( I β†Ύ 𝐡))
266adantr 480 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ (πΌβ€˜π‘†) ∈ 𝐸)
27 simplr 766 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ 𝑆 ∈ 𝐸)
28 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ 𝑔 ∈ 𝑇)
298, 3tendopl2 40161 . . . . 5 (((πΌβ€˜π‘†) ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) β†’ (((πΌβ€˜π‘†)𝑃𝑆)β€˜π‘”) = (((πΌβ€˜π‘†)β€˜π‘”) ∘ (π‘†β€˜π‘”)))
3026, 27, 28, 29syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ (((πΌβ€˜π‘†)𝑃𝑆)β€˜π‘”) = (((πΌβ€˜π‘†)β€˜π‘”) ∘ (π‘†β€˜π‘”)))
3112, 11tendo02 40171 . . . . 5 (𝑔 ∈ 𝑇 β†’ (π‘‚β€˜π‘”) = ( I β†Ύ 𝐡))
3231adantl 481 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ (π‘‚β€˜π‘”) = ( I β†Ύ 𝐡))
3325, 30, 323eqtr4d 2776 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ (((πΌβ€˜π‘†)𝑃𝑆)β€˜π‘”) = (π‘‚β€˜π‘”))
3433ralrimiva 3140 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) β†’ βˆ€π‘” ∈ 𝑇 (((πΌβ€˜π‘†)𝑃𝑆)β€˜π‘”) = (π‘‚β€˜π‘”))
352, 3, 4tendoeq1 40148 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (((πΌβ€˜π‘†)𝑃𝑆) ∈ 𝐸 ∧ 𝑂 ∈ 𝐸) ∧ βˆ€π‘” ∈ 𝑇 (((πΌβ€˜π‘†)𝑃𝑆)β€˜π‘”) = (π‘‚β€˜π‘”)) β†’ ((πΌβ€˜π‘†)𝑃𝑆) = 𝑂)
361, 10, 14, 34, 35syl121anc 1372 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) β†’ ((πΌβ€˜π‘†)𝑃𝑆) = 𝑂)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  βˆ€wral 3055   ↦ cmpt 5224   I cid 5566  β—‘ccnv 5668   β†Ύ cres 5671   ∘ ccom 5673  β€“1-1-ontoβ†’wf1o 6536  β€˜cfv 6537  (class class class)co 7405   ∈ cmpo 7407  Basecbs 17153  HLchlt 38733  LHypclh 39368  LTrncltrn 39485  TEndoctendo 40136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-riotaBAD 38336
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7974  df-2nd 7975  df-undef 8259  df-map 8824  df-proset 18260  df-poset 18278  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-p1 18391  df-lat 18397  df-clat 18464  df-oposet 38559  df-ol 38561  df-oml 38562  df-covers 38649  df-ats 38650  df-atl 38681  df-cvlat 38705  df-hlat 38734  df-llines 38882  df-lplanes 38883  df-lvols 38884  df-lines 38885  df-psubsp 38887  df-pmap 38888  df-padd 39180  df-lhyp 39372  df-laut 39373  df-ldil 39488  df-ltrn 39489  df-trl 39543  df-tendo 40139
This theorem is referenced by:  tendoipl2  40182  erngdvlem1  40372  erngdvlem1-rN  40380
  Copyright terms: Public domain W3C validator