![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tghilberti1 | Structured version Visualization version GIF version |
Description: There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Thierry Arnoux, 25-May-2019.) |
Ref | Expression |
---|---|
tglineelsb2.p | β’ π΅ = (BaseβπΊ) |
tglineelsb2.i | β’ πΌ = (ItvβπΊ) |
tglineelsb2.l | β’ πΏ = (LineGβπΊ) |
tglineelsb2.g | β’ (π β πΊ β TarskiG) |
tglineelsb2.1 | β’ (π β π β π΅) |
tglineelsb2.2 | β’ (π β π β π΅) |
tglineelsb2.4 | β’ (π β π β π) |
Ref | Expression |
---|---|
tghilberti1 | β’ (π β βπ₯ β ran πΏ(π β π₯ β§ π β π₯)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineelsb2.p | . . 3 β’ π΅ = (BaseβπΊ) | |
2 | tglineelsb2.i | . . 3 β’ πΌ = (ItvβπΊ) | |
3 | tglineelsb2.l | . . 3 β’ πΏ = (LineGβπΊ) | |
4 | tglineelsb2.g | . . 3 β’ (π β πΊ β TarskiG) | |
5 | tglineelsb2.1 | . . 3 β’ (π β π β π΅) | |
6 | tglineelsb2.2 | . . 3 β’ (π β π β π΅) | |
7 | tglineelsb2.4 | . . 3 β’ (π β π β π) | |
8 | 1, 2, 3, 4, 5, 6, 7 | tgelrnln 28408 | . 2 β’ (π β (ππΏπ) β ran πΏ) |
9 | 1, 2, 3, 4, 5, 6, 7 | tglinerflx1 28411 | . 2 β’ (π β π β (ππΏπ)) |
10 | 1, 2, 3, 4, 5, 6, 7 | tglinerflx2 28412 | . 2 β’ (π β π β (ππΏπ)) |
11 | eleq2 2817 | . . . 4 β’ (π₯ = (ππΏπ) β (π β π₯ β π β (ππΏπ))) | |
12 | eleq2 2817 | . . . 4 β’ (π₯ = (ππΏπ) β (π β π₯ β π β (ππΏπ))) | |
13 | 11, 12 | anbi12d 630 | . . 3 β’ (π₯ = (ππΏπ) β ((π β π₯ β§ π β π₯) β (π β (ππΏπ) β§ π β (ππΏπ)))) |
14 | 13 | rspcev 3607 | . 2 β’ (((ππΏπ) β ran πΏ β§ (π β (ππΏπ) β§ π β (ππΏπ))) β βπ₯ β ran πΏ(π β π₯ β§ π β π₯)) |
15 | 8, 9, 10, 14 | syl12anc 836 | 1 β’ (π β βπ₯ β ran πΏ(π β π₯ β§ π β π₯)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 β wne 2935 βwrex 3065 ran crn 5673 βcfv 6542 (class class class)co 7414 Basecbs 17165 TarskiGcstrkg 28205 Itvcitv 28211 LineGclng 28212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7732 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7985 df-2nd 7986 df-trkgc 28226 df-trkgb 28227 df-trkgcb 28228 df-trkg 28231 |
This theorem is referenced by: tglinethrueu 28417 |
Copyright terms: Public domain | W3C validator |