![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tghilberti1 | Structured version Visualization version GIF version |
Description: There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Thierry Arnoux, 25-May-2019.) |
Ref | Expression |
---|---|
tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglineelsb2.1 | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
tglineelsb2.2 | ⊢ (𝜑 → 𝑄 ∈ 𝐵) |
tglineelsb2.4 | ⊢ (𝜑 → 𝑃 ≠ 𝑄) |
Ref | Expression |
---|---|
tghilberti1 | ⊢ (𝜑 → ∃𝑥 ∈ ran 𝐿(𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineelsb2.p | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | tglineelsb2.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
3 | tglineelsb2.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglineelsb2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | tglineelsb2.1 | . . 3 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
6 | tglineelsb2.2 | . . 3 ⊢ (𝜑 → 𝑄 ∈ 𝐵) | |
7 | tglineelsb2.4 | . . 3 ⊢ (𝜑 → 𝑃 ≠ 𝑄) | |
8 | 1, 2, 3, 4, 5, 6, 7 | tgelrnln 28664 | . 2 ⊢ (𝜑 → (𝑃𝐿𝑄) ∈ ran 𝐿) |
9 | 1, 2, 3, 4, 5, 6, 7 | tglinerflx1 28667 | . 2 ⊢ (𝜑 → 𝑃 ∈ (𝑃𝐿𝑄)) |
10 | 1, 2, 3, 4, 5, 6, 7 | tglinerflx2 28668 | . 2 ⊢ (𝜑 → 𝑄 ∈ (𝑃𝐿𝑄)) |
11 | eleq2 2830 | . . . 4 ⊢ (𝑥 = (𝑃𝐿𝑄) → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ (𝑃𝐿𝑄))) | |
12 | eleq2 2830 | . . . 4 ⊢ (𝑥 = (𝑃𝐿𝑄) → (𝑄 ∈ 𝑥 ↔ 𝑄 ∈ (𝑃𝐿𝑄))) | |
13 | 11, 12 | anbi12d 632 | . . 3 ⊢ (𝑥 = (𝑃𝐿𝑄) → ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ↔ (𝑃 ∈ (𝑃𝐿𝑄) ∧ 𝑄 ∈ (𝑃𝐿𝑄)))) |
14 | 13 | rspcev 3625 | . 2 ⊢ (((𝑃𝐿𝑄) ∈ ran 𝐿 ∧ (𝑃 ∈ (𝑃𝐿𝑄) ∧ 𝑄 ∈ (𝑃𝐿𝑄))) → ∃𝑥 ∈ ran 𝐿(𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
15 | 8, 9, 10, 14 | syl12anc 837 | 1 ⊢ (𝜑 → ∃𝑥 ∈ ran 𝐿(𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 ∃wrex 3070 ran crn 5694 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 TarskiGcstrkg 28461 Itvcitv 28467 LineGclng 28468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-trkgc 28482 df-trkgb 28483 df-trkgcb 28484 df-trkg 28487 |
This theorem is referenced by: tglinethrueu 28673 |
Copyright terms: Public domain | W3C validator |