![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tghilberti1 | Structured version Visualization version GIF version |
Description: There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Thierry Arnoux, 25-May-2019.) |
Ref | Expression |
---|---|
tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglineelsb2.1 | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
tglineelsb2.2 | ⊢ (𝜑 → 𝑄 ∈ 𝐵) |
tglineelsb2.4 | ⊢ (𝜑 → 𝑃 ≠ 𝑄) |
Ref | Expression |
---|---|
tghilberti1 | ⊢ (𝜑 → ∃𝑥 ∈ ran 𝐿(𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineelsb2.p | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | tglineelsb2.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
3 | tglineelsb2.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglineelsb2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | tglineelsb2.1 | . . 3 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
6 | tglineelsb2.2 | . . 3 ⊢ (𝜑 → 𝑄 ∈ 𝐵) | |
7 | tglineelsb2.4 | . . 3 ⊢ (𝜑 → 𝑃 ≠ 𝑄) | |
8 | 1, 2, 3, 4, 5, 6, 7 | tgelrnln 27746 | . 2 ⊢ (𝜑 → (𝑃𝐿𝑄) ∈ ran 𝐿) |
9 | 1, 2, 3, 4, 5, 6, 7 | tglinerflx1 27749 | . 2 ⊢ (𝜑 → 𝑃 ∈ (𝑃𝐿𝑄)) |
10 | 1, 2, 3, 4, 5, 6, 7 | tglinerflx2 27750 | . 2 ⊢ (𝜑 → 𝑄 ∈ (𝑃𝐿𝑄)) |
11 | eleq2 2821 | . . . 4 ⊢ (𝑥 = (𝑃𝐿𝑄) → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ (𝑃𝐿𝑄))) | |
12 | eleq2 2821 | . . . 4 ⊢ (𝑥 = (𝑃𝐿𝑄) → (𝑄 ∈ 𝑥 ↔ 𝑄 ∈ (𝑃𝐿𝑄))) | |
13 | 11, 12 | anbi12d 631 | . . 3 ⊢ (𝑥 = (𝑃𝐿𝑄) → ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ↔ (𝑃 ∈ (𝑃𝐿𝑄) ∧ 𝑄 ∈ (𝑃𝐿𝑄)))) |
14 | 13 | rspcev 3609 | . 2 ⊢ (((𝑃𝐿𝑄) ∈ ran 𝐿 ∧ (𝑃 ∈ (𝑃𝐿𝑄) ∧ 𝑄 ∈ (𝑃𝐿𝑄))) → ∃𝑥 ∈ ran 𝐿(𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
15 | 8, 9, 10, 14 | syl12anc 835 | 1 ⊢ (𝜑 → ∃𝑥 ∈ ran 𝐿(𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2939 ∃wrex 3069 ran crn 5670 ‘cfv 6532 (class class class)co 7393 Basecbs 17126 TarskiGcstrkg 27543 Itvcitv 27549 LineGclng 27550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-fv 6540 df-ov 7396 df-oprab 7397 df-mpo 7398 df-1st 7957 df-2nd 7958 df-trkgc 27564 df-trkgb 27565 df-trkgcb 27566 df-trkg 27569 |
This theorem is referenced by: tglinethrueu 27755 |
Copyright terms: Public domain | W3C validator |