![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tghilberti1 | Structured version Visualization version GIF version |
Description: There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Thierry Arnoux, 25-May-2019.) |
Ref | Expression |
---|---|
tglineelsb2.p | β’ π΅ = (BaseβπΊ) |
tglineelsb2.i | β’ πΌ = (ItvβπΊ) |
tglineelsb2.l | β’ πΏ = (LineGβπΊ) |
tglineelsb2.g | β’ (π β πΊ β TarskiG) |
tglineelsb2.1 | β’ (π β π β π΅) |
tglineelsb2.2 | β’ (π β π β π΅) |
tglineelsb2.4 | β’ (π β π β π) |
Ref | Expression |
---|---|
tghilberti1 | β’ (π β βπ₯ β ran πΏ(π β π₯ β§ π β π₯)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineelsb2.p | . . 3 β’ π΅ = (BaseβπΊ) | |
2 | tglineelsb2.i | . . 3 β’ πΌ = (ItvβπΊ) | |
3 | tglineelsb2.l | . . 3 β’ πΏ = (LineGβπΊ) | |
4 | tglineelsb2.g | . . 3 β’ (π β πΊ β TarskiG) | |
5 | tglineelsb2.1 | . . 3 β’ (π β π β π΅) | |
6 | tglineelsb2.2 | . . 3 β’ (π β π β π΅) | |
7 | tglineelsb2.4 | . . 3 β’ (π β π β π) | |
8 | 1, 2, 3, 4, 5, 6, 7 | tgelrnln 28476 | . 2 β’ (π β (ππΏπ) β ran πΏ) |
9 | 1, 2, 3, 4, 5, 6, 7 | tglinerflx1 28479 | . 2 β’ (π β π β (ππΏπ)) |
10 | 1, 2, 3, 4, 5, 6, 7 | tglinerflx2 28480 | . 2 β’ (π β π β (ππΏπ)) |
11 | eleq2 2814 | . . . 4 β’ (π₯ = (ππΏπ) β (π β π₯ β π β (ππΏπ))) | |
12 | eleq2 2814 | . . . 4 β’ (π₯ = (ππΏπ) β (π β π₯ β π β (ππΏπ))) | |
13 | 11, 12 | anbi12d 630 | . . 3 β’ (π₯ = (ππΏπ) β ((π β π₯ β§ π β π₯) β (π β (ππΏπ) β§ π β (ππΏπ)))) |
14 | 13 | rspcev 3602 | . 2 β’ (((ππΏπ) β ran πΏ β§ (π β (ππΏπ) β§ π β (ππΏπ))) β βπ₯ β ran πΏ(π β π₯ β§ π β π₯)) |
15 | 8, 9, 10, 14 | syl12anc 835 | 1 β’ (π β βπ₯ β ran πΏ(π β π₯ β§ π β π₯)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β wne 2930 βwrex 3060 ran crn 5673 βcfv 6542 (class class class)co 7415 Basecbs 17177 TarskiGcstrkg 28273 Itvcitv 28279 LineGclng 28280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7418 df-oprab 7419 df-mpo 7420 df-1st 7989 df-2nd 7990 df-trkgc 28294 df-trkgb 28295 df-trkgcb 28296 df-trkg 28299 |
This theorem is referenced by: tglinethrueu 28485 |
Copyright terms: Public domain | W3C validator |