| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tghilberti1 | Structured version Visualization version GIF version | ||
| Description: There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Thierry Arnoux, 25-May-2019.) |
| Ref | Expression |
|---|---|
| tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
| tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglineelsb2.1 | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
| tglineelsb2.2 | ⊢ (𝜑 → 𝑄 ∈ 𝐵) |
| tglineelsb2.4 | ⊢ (𝜑 → 𝑃 ≠ 𝑄) |
| Ref | Expression |
|---|---|
| tghilberti1 | ⊢ (𝜑 → ∃𝑥 ∈ ran 𝐿(𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglineelsb2.p | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | tglineelsb2.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 3 | tglineelsb2.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 4 | tglineelsb2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | tglineelsb2.1 | . . 3 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
| 6 | tglineelsb2.2 | . . 3 ⊢ (𝜑 → 𝑄 ∈ 𝐵) | |
| 7 | tglineelsb2.4 | . . 3 ⊢ (𝜑 → 𝑃 ≠ 𝑄) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | tgelrnln 28533 | . 2 ⊢ (𝜑 → (𝑃𝐿𝑄) ∈ ran 𝐿) |
| 9 | 1, 2, 3, 4, 5, 6, 7 | tglinerflx1 28536 | . 2 ⊢ (𝜑 → 𝑃 ∈ (𝑃𝐿𝑄)) |
| 10 | 1, 2, 3, 4, 5, 6, 7 | tglinerflx2 28537 | . 2 ⊢ (𝜑 → 𝑄 ∈ (𝑃𝐿𝑄)) |
| 11 | eleq2 2817 | . . . 4 ⊢ (𝑥 = (𝑃𝐿𝑄) → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ (𝑃𝐿𝑄))) | |
| 12 | eleq2 2817 | . . . 4 ⊢ (𝑥 = (𝑃𝐿𝑄) → (𝑄 ∈ 𝑥 ↔ 𝑄 ∈ (𝑃𝐿𝑄))) | |
| 13 | 11, 12 | anbi12d 632 | . . 3 ⊢ (𝑥 = (𝑃𝐿𝑄) → ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ↔ (𝑃 ∈ (𝑃𝐿𝑄) ∧ 𝑄 ∈ (𝑃𝐿𝑄)))) |
| 14 | 13 | rspcev 3585 | . 2 ⊢ (((𝑃𝐿𝑄) ∈ ran 𝐿 ∧ (𝑃 ∈ (𝑃𝐿𝑄) ∧ 𝑄 ∈ (𝑃𝐿𝑄))) → ∃𝑥 ∈ ran 𝐿(𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
| 15 | 8, 9, 10, 14 | syl12anc 836 | 1 ⊢ (𝜑 → ∃𝑥 ∈ ran 𝐿(𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ran crn 5632 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 TarskiGcstrkg 28330 Itvcitv 28336 LineGclng 28337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-trkgc 28351 df-trkgb 28352 df-trkgcb 28353 df-trkg 28356 |
| This theorem is referenced by: tglinethrueu 28542 |
| Copyright terms: Public domain | W3C validator |