MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tghilberti1 Structured version   Visualization version   GIF version

Theorem tghilberti1 28483
Description: There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐡 = (Baseβ€˜πΊ)
tglineelsb2.i 𝐼 = (Itvβ€˜πΊ)
tglineelsb2.l 𝐿 = (LineGβ€˜πΊ)
tglineelsb2.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
tglineelsb2.1 (πœ‘ β†’ 𝑃 ∈ 𝐡)
tglineelsb2.2 (πœ‘ β†’ 𝑄 ∈ 𝐡)
tglineelsb2.4 (πœ‘ β†’ 𝑃 β‰  𝑄)
Assertion
Ref Expression
tghilberti1 (πœ‘ β†’ βˆƒπ‘₯ ∈ ran 𝐿(𝑃 ∈ π‘₯ ∧ 𝑄 ∈ π‘₯))
Distinct variable groups:   π‘₯,𝐡   π‘₯,𝐺   π‘₯,𝐼   π‘₯,𝐿   π‘₯,𝑃   π‘₯,𝑄   πœ‘,π‘₯

Proof of Theorem tghilberti1
StepHypRef Expression
1 tglineelsb2.p . . 3 𝐡 = (Baseβ€˜πΊ)
2 tglineelsb2.i . . 3 𝐼 = (Itvβ€˜πΊ)
3 tglineelsb2.l . . 3 𝐿 = (LineGβ€˜πΊ)
4 tglineelsb2.g . . 3 (πœ‘ β†’ 𝐺 ∈ TarskiG)
5 tglineelsb2.1 . . 3 (πœ‘ β†’ 𝑃 ∈ 𝐡)
6 tglineelsb2.2 . . 3 (πœ‘ β†’ 𝑄 ∈ 𝐡)
7 tglineelsb2.4 . . 3 (πœ‘ β†’ 𝑃 β‰  𝑄)
81, 2, 3, 4, 5, 6, 7tgelrnln 28476 . 2 (πœ‘ β†’ (𝑃𝐿𝑄) ∈ ran 𝐿)
91, 2, 3, 4, 5, 6, 7tglinerflx1 28479 . 2 (πœ‘ β†’ 𝑃 ∈ (𝑃𝐿𝑄))
101, 2, 3, 4, 5, 6, 7tglinerflx2 28480 . 2 (πœ‘ β†’ 𝑄 ∈ (𝑃𝐿𝑄))
11 eleq2 2814 . . . 4 (π‘₯ = (𝑃𝐿𝑄) β†’ (𝑃 ∈ π‘₯ ↔ 𝑃 ∈ (𝑃𝐿𝑄)))
12 eleq2 2814 . . . 4 (π‘₯ = (𝑃𝐿𝑄) β†’ (𝑄 ∈ π‘₯ ↔ 𝑄 ∈ (𝑃𝐿𝑄)))
1311, 12anbi12d 630 . . 3 (π‘₯ = (𝑃𝐿𝑄) β†’ ((𝑃 ∈ π‘₯ ∧ 𝑄 ∈ π‘₯) ↔ (𝑃 ∈ (𝑃𝐿𝑄) ∧ 𝑄 ∈ (𝑃𝐿𝑄))))
1413rspcev 3602 . 2 (((𝑃𝐿𝑄) ∈ ran 𝐿 ∧ (𝑃 ∈ (𝑃𝐿𝑄) ∧ 𝑄 ∈ (𝑃𝐿𝑄))) β†’ βˆƒπ‘₯ ∈ ran 𝐿(𝑃 ∈ π‘₯ ∧ 𝑄 ∈ π‘₯))
158, 9, 10, 14syl12anc 835 1 (πœ‘ β†’ βˆƒπ‘₯ ∈ ran 𝐿(𝑃 ∈ π‘₯ ∧ 𝑄 ∈ π‘₯))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  βˆƒwrex 3060  ran crn 5673  β€˜cfv 6542  (class class class)co 7415  Basecbs 17177  TarskiGcstrkg 28273  Itvcitv 28279  LineGclng 28280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423  ax-un 7737
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7418  df-oprab 7419  df-mpo 7420  df-1st 7989  df-2nd 7990  df-trkgc 28294  df-trkgb 28295  df-trkgcb 28296  df-trkg 28299
This theorem is referenced by:  tglinethrueu  28485
  Copyright terms: Public domain W3C validator