MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tghilberti1 Structured version   Visualization version   GIF version

Theorem tghilberti1 26998
Description: There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tglineelsb2.1 (𝜑𝑃𝐵)
tglineelsb2.2 (𝜑𝑄𝐵)
tglineelsb2.4 (𝜑𝑃𝑄)
Assertion
Ref Expression
tghilberti1 (𝜑 → ∃𝑥 ∈ ran 𝐿(𝑃𝑥𝑄𝑥))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝐼   𝑥,𝐿   𝑥,𝑃   𝑥,𝑄   𝜑,𝑥

Proof of Theorem tghilberti1
StepHypRef Expression
1 tglineelsb2.p . . 3 𝐵 = (Base‘𝐺)
2 tglineelsb2.i . . 3 𝐼 = (Itv‘𝐺)
3 tglineelsb2.l . . 3 𝐿 = (LineG‘𝐺)
4 tglineelsb2.g . . 3 (𝜑𝐺 ∈ TarskiG)
5 tglineelsb2.1 . . 3 (𝜑𝑃𝐵)
6 tglineelsb2.2 . . 3 (𝜑𝑄𝐵)
7 tglineelsb2.4 . . 3 (𝜑𝑃𝑄)
81, 2, 3, 4, 5, 6, 7tgelrnln 26991 . 2 (𝜑 → (𝑃𝐿𝑄) ∈ ran 𝐿)
91, 2, 3, 4, 5, 6, 7tglinerflx1 26994 . 2 (𝜑𝑃 ∈ (𝑃𝐿𝑄))
101, 2, 3, 4, 5, 6, 7tglinerflx2 26995 . 2 (𝜑𝑄 ∈ (𝑃𝐿𝑄))
11 eleq2 2827 . . . 4 (𝑥 = (𝑃𝐿𝑄) → (𝑃𝑥𝑃 ∈ (𝑃𝐿𝑄)))
12 eleq2 2827 . . . 4 (𝑥 = (𝑃𝐿𝑄) → (𝑄𝑥𝑄 ∈ (𝑃𝐿𝑄)))
1311, 12anbi12d 631 . . 3 (𝑥 = (𝑃𝐿𝑄) → ((𝑃𝑥𝑄𝑥) ↔ (𝑃 ∈ (𝑃𝐿𝑄) ∧ 𝑄 ∈ (𝑃𝐿𝑄))))
1413rspcev 3561 . 2 (((𝑃𝐿𝑄) ∈ ran 𝐿 ∧ (𝑃 ∈ (𝑃𝐿𝑄) ∧ 𝑄 ∈ (𝑃𝐿𝑄))) → ∃𝑥 ∈ ran 𝐿(𝑃𝑥𝑄𝑥))
158, 9, 10, 14syl12anc 834 1 (𝜑 → ∃𝑥 ∈ ran 𝐿(𝑃𝑥𝑄𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wrex 3065  ran crn 5590  cfv 6433  (class class class)co 7275  Basecbs 16912  TarskiGcstrkg 26788  Itvcitv 26794  LineGclng 26795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-trkgc 26809  df-trkgb 26810  df-trkgcb 26811  df-trkg 26814
This theorem is referenced by:  tglinethrueu  27000
  Copyright terms: Public domain W3C validator