MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tghilberti1 Structured version   Visualization version   GIF version

Theorem tghilberti1 25992
Description: There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tglineelsb2.1 (𝜑𝑃𝐵)
tglineelsb2.2 (𝜑𝑄𝐵)
tglineelsb2.4 (𝜑𝑃𝑄)
Assertion
Ref Expression
tghilberti1 (𝜑 → ∃𝑥 ∈ ran 𝐿(𝑃𝑥𝑄𝑥))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝐼   𝑥,𝐿   𝑥,𝑃   𝑥,𝑄   𝜑,𝑥

Proof of Theorem tghilberti1
StepHypRef Expression
1 tglineelsb2.p . . 3 𝐵 = (Base‘𝐺)
2 tglineelsb2.i . . 3 𝐼 = (Itv‘𝐺)
3 tglineelsb2.l . . 3 𝐿 = (LineG‘𝐺)
4 tglineelsb2.g . . 3 (𝜑𝐺 ∈ TarskiG)
5 tglineelsb2.1 . . 3 (𝜑𝑃𝐵)
6 tglineelsb2.2 . . 3 (𝜑𝑄𝐵)
7 tglineelsb2.4 . . 3 (𝜑𝑃𝑄)
81, 2, 3, 4, 5, 6, 7tgelrnln 25985 . 2 (𝜑 → (𝑃𝐿𝑄) ∈ ran 𝐿)
91, 2, 3, 4, 5, 6, 7tglinerflx1 25988 . 2 (𝜑𝑃 ∈ (𝑃𝐿𝑄))
101, 2, 3, 4, 5, 6, 7tglinerflx2 25989 . 2 (𝜑𝑄 ∈ (𝑃𝐿𝑄))
11 eleq2 2848 . . . 4 (𝑥 = (𝑃𝐿𝑄) → (𝑃𝑥𝑃 ∈ (𝑃𝐿𝑄)))
12 eleq2 2848 . . . 4 (𝑥 = (𝑃𝐿𝑄) → (𝑄𝑥𝑄 ∈ (𝑃𝐿𝑄)))
1311, 12anbi12d 624 . . 3 (𝑥 = (𝑃𝐿𝑄) → ((𝑃𝑥𝑄𝑥) ↔ (𝑃 ∈ (𝑃𝐿𝑄) ∧ 𝑄 ∈ (𝑃𝐿𝑄))))
1413rspcev 3511 . 2 (((𝑃𝐿𝑄) ∈ ran 𝐿 ∧ (𝑃 ∈ (𝑃𝐿𝑄) ∧ 𝑄 ∈ (𝑃𝐿𝑄))) → ∃𝑥 ∈ ran 𝐿(𝑃𝑥𝑄𝑥))
158, 9, 10, 14syl12anc 827 1 (𝜑 → ∃𝑥 ∈ ran 𝐿(𝑃𝑥𝑄𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  wne 2969  wrex 3091  ran crn 5358  cfv 6137  (class class class)co 6924  Basecbs 16259  TarskiGcstrkg 25785  Itvcitv 25791  LineGclng 25792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-fv 6145  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-1st 7447  df-2nd 7448  df-trkgc 25803  df-trkgb 25804  df-trkgcb 25805  df-trkg 25808
This theorem is referenced by:  tglinethrueu  25994
  Copyright terms: Public domain W3C validator