| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tghilberti1 | Structured version Visualization version GIF version | ||
| Description: There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Thierry Arnoux, 25-May-2019.) |
| Ref | Expression |
|---|---|
| tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
| tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglineelsb2.1 | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
| tglineelsb2.2 | ⊢ (𝜑 → 𝑄 ∈ 𝐵) |
| tglineelsb2.4 | ⊢ (𝜑 → 𝑃 ≠ 𝑄) |
| Ref | Expression |
|---|---|
| tghilberti1 | ⊢ (𝜑 → ∃𝑥 ∈ ran 𝐿(𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglineelsb2.p | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | tglineelsb2.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 3 | tglineelsb2.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 4 | tglineelsb2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | tglineelsb2.1 | . . 3 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
| 6 | tglineelsb2.2 | . . 3 ⊢ (𝜑 → 𝑄 ∈ 𝐵) | |
| 7 | tglineelsb2.4 | . . 3 ⊢ (𝜑 → 𝑃 ≠ 𝑄) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | tgelrnln 28563 | . 2 ⊢ (𝜑 → (𝑃𝐿𝑄) ∈ ran 𝐿) |
| 9 | 1, 2, 3, 4, 5, 6, 7 | tglinerflx1 28566 | . 2 ⊢ (𝜑 → 𝑃 ∈ (𝑃𝐿𝑄)) |
| 10 | 1, 2, 3, 4, 5, 6, 7 | tglinerflx2 28567 | . 2 ⊢ (𝜑 → 𝑄 ∈ (𝑃𝐿𝑄)) |
| 11 | eleq2 2818 | . . . 4 ⊢ (𝑥 = (𝑃𝐿𝑄) → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ (𝑃𝐿𝑄))) | |
| 12 | eleq2 2818 | . . . 4 ⊢ (𝑥 = (𝑃𝐿𝑄) → (𝑄 ∈ 𝑥 ↔ 𝑄 ∈ (𝑃𝐿𝑄))) | |
| 13 | 11, 12 | anbi12d 632 | . . 3 ⊢ (𝑥 = (𝑃𝐿𝑄) → ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ↔ (𝑃 ∈ (𝑃𝐿𝑄) ∧ 𝑄 ∈ (𝑃𝐿𝑄)))) |
| 14 | 13 | rspcev 3591 | . 2 ⊢ (((𝑃𝐿𝑄) ∈ ran 𝐿 ∧ (𝑃 ∈ (𝑃𝐿𝑄) ∧ 𝑄 ∈ (𝑃𝐿𝑄))) → ∃𝑥 ∈ ran 𝐿(𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
| 15 | 8, 9, 10, 14 | syl12anc 836 | 1 ⊢ (𝜑 → ∃𝑥 ∈ ran 𝐿(𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 ran crn 5641 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 TarskiGcstrkg 28360 Itvcitv 28366 LineGclng 28367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-trkgc 28381 df-trkgb 28382 df-trkgcb 28383 df-trkg 28386 |
| This theorem is referenced by: tglinethrueu 28572 |
| Copyright terms: Public domain | W3C validator |