Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tghilberti1 | Structured version Visualization version GIF version |
Description: There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Thierry Arnoux, 25-May-2019.) |
Ref | Expression |
---|---|
tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglineelsb2.1 | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
tglineelsb2.2 | ⊢ (𝜑 → 𝑄 ∈ 𝐵) |
tglineelsb2.4 | ⊢ (𝜑 → 𝑃 ≠ 𝑄) |
Ref | Expression |
---|---|
tghilberti1 | ⊢ (𝜑 → ∃𝑥 ∈ ran 𝐿(𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineelsb2.p | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | tglineelsb2.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
3 | tglineelsb2.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglineelsb2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | tglineelsb2.1 | . . 3 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
6 | tglineelsb2.2 | . . 3 ⊢ (𝜑 → 𝑄 ∈ 𝐵) | |
7 | tglineelsb2.4 | . . 3 ⊢ (𝜑 → 𝑃 ≠ 𝑄) | |
8 | 1, 2, 3, 4, 5, 6, 7 | tgelrnln 26991 | . 2 ⊢ (𝜑 → (𝑃𝐿𝑄) ∈ ran 𝐿) |
9 | 1, 2, 3, 4, 5, 6, 7 | tglinerflx1 26994 | . 2 ⊢ (𝜑 → 𝑃 ∈ (𝑃𝐿𝑄)) |
10 | 1, 2, 3, 4, 5, 6, 7 | tglinerflx2 26995 | . 2 ⊢ (𝜑 → 𝑄 ∈ (𝑃𝐿𝑄)) |
11 | eleq2 2827 | . . . 4 ⊢ (𝑥 = (𝑃𝐿𝑄) → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ (𝑃𝐿𝑄))) | |
12 | eleq2 2827 | . . . 4 ⊢ (𝑥 = (𝑃𝐿𝑄) → (𝑄 ∈ 𝑥 ↔ 𝑄 ∈ (𝑃𝐿𝑄))) | |
13 | 11, 12 | anbi12d 631 | . . 3 ⊢ (𝑥 = (𝑃𝐿𝑄) → ((𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥) ↔ (𝑃 ∈ (𝑃𝐿𝑄) ∧ 𝑄 ∈ (𝑃𝐿𝑄)))) |
14 | 13 | rspcev 3561 | . 2 ⊢ (((𝑃𝐿𝑄) ∈ ran 𝐿 ∧ (𝑃 ∈ (𝑃𝐿𝑄) ∧ 𝑄 ∈ (𝑃𝐿𝑄))) → ∃𝑥 ∈ ran 𝐿(𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
15 | 8, 9, 10, 14 | syl12anc 834 | 1 ⊢ (𝜑 → ∃𝑥 ∈ ran 𝐿(𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 ran crn 5590 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 TarskiGcstrkg 26788 Itvcitv 26794 LineGclng 26795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-trkgc 26809 df-trkgb 26810 df-trkgcb 26811 df-trkg 26814 |
This theorem is referenced by: tglinethrueu 27000 |
Copyright terms: Public domain | W3C validator |