Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istoprelowl Structured version   Visualization version   GIF version

Theorem istoprelowl 37295
Description: The set of all closed-below, open-above intervals of reals generate a topology on the reals. (Contributed by ML, 27-Jul-2020.)
Hypothesis
Ref Expression
istoprelowl.1 𝐼 = ([,) “ (ℝ × ℝ))
Assertion
Ref Expression
istoprelowl (topGen‘𝐼) ∈ (TopOn‘ℝ)

Proof of Theorem istoprelowl
StepHypRef Expression
1 istoprelowl.1 . . 3 𝐼 = ([,) “ (ℝ × ℝ))
21isbasisrelowl 37293 . 2 𝐼 ∈ TopBases
3 tgtopon 22924 . . 3 (𝐼 ∈ TopBases → (topGen‘𝐼) ∈ (TopOn‘ 𝐼))
41icoreunrn 37294 . . . . 5 ℝ = 𝐼
54eqcomi 2743 . . . 4 𝐼 = ℝ
65fveq2i 6888 . . 3 (TopOn‘ 𝐼) = (TopOn‘ℝ)
73, 6eleqtrdi 2843 . 2 (𝐼 ∈ TopBases → (topGen‘𝐼) ∈ (TopOn‘ℝ))
82, 7ax-mp 5 1 (topGen‘𝐼) ∈ (TopOn‘ℝ)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107   cuni 4887   × cxp 5663  cima 5668  cfv 6540  cr 11135  [,)cico 13370  topGenctg 17452  TopOnctopon 22863  TopBasesctb 22898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-po 5572  df-so 5573  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7995  df-2nd 7996  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-ico 13374  df-topgen 17458  df-top 22847  df-topon 22864  df-bases 22899
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator