Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istoprelowl Structured version   Visualization version   GIF version

Theorem istoprelowl 37321
Description: The set of all closed-below, open-above intervals of reals generate a topology on the reals. (Contributed by ML, 27-Jul-2020.)
Hypothesis
Ref Expression
istoprelowl.1 𝐼 = ([,) “ (ℝ × ℝ))
Assertion
Ref Expression
istoprelowl (topGen‘𝐼) ∈ (TopOn‘ℝ)

Proof of Theorem istoprelowl
StepHypRef Expression
1 istoprelowl.1 . . 3 𝐼 = ([,) “ (ℝ × ℝ))
21isbasisrelowl 37319 . 2 𝐼 ∈ TopBases
3 tgtopon 22834 . . 3 (𝐼 ∈ TopBases → (topGen‘𝐼) ∈ (TopOn‘ 𝐼))
41icoreunrn 37320 . . . . 5 ℝ = 𝐼
54eqcomi 2738 . . . 4 𝐼 = ℝ
65fveq2i 6843 . . 3 (TopOn‘ 𝐼) = (TopOn‘ℝ)
73, 6eleqtrdi 2838 . 2 (𝐼 ∈ TopBases → (topGen‘𝐼) ∈ (TopOn‘ℝ))
82, 7ax-mp 5 1 (topGen‘𝐼) ∈ (TopOn‘ℝ)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109   cuni 4867   × cxp 5629  cima 5634  cfv 6499  cr 11043  [,)cico 13284  topGenctg 17376  TopOnctopon 22773  TopBasesctb 22808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-ico 13288  df-topgen 17382  df-top 22757  df-topon 22774  df-bases 22809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator