Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmsval Structured version   Visualization version   GIF version

Theorem tmsval 23091
 Description: For any metric there is an associated metric space. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tmsval.m 𝑀 = {⟨(Base‘ndx), 𝑋⟩, ⟨(dist‘ndx), 𝐷⟩}
tmsval.k 𝐾 = (toMetSp‘𝐷)
Assertion
Ref Expression
tmsval (𝐷 ∈ (∞Met‘𝑋) → 𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))

Proof of Theorem tmsval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 tmsval.k . 2 𝐾 = (toMetSp‘𝐷)
2 df-tms 22932 . . 3 toMetSp = (𝑑 ran ∞Met ↦ ({⟨(Base‘ndx), dom dom 𝑑⟩, ⟨(dist‘ndx), 𝑑⟩} sSet ⟨(TopSet‘ndx), (MetOpen‘𝑑)⟩))
3 dmeq 5740 . . . . . . . . 9 (𝑑 = 𝐷 → dom 𝑑 = dom 𝐷)
43dmeqd 5742 . . . . . . . 8 (𝑑 = 𝐷 → dom dom 𝑑 = dom dom 𝐷)
5 xmetf 22939 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
65fdmd 6501 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → dom 𝐷 = (𝑋 × 𝑋))
76dmeqd 5742 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → dom dom 𝐷 = dom (𝑋 × 𝑋))
8 dmxpid 5768 . . . . . . . . 9 dom (𝑋 × 𝑋) = 𝑋
97, 8eqtrdi 2852 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → dom dom 𝐷 = 𝑋)
104, 9sylan9eqr 2858 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = 𝑋)
1110opeq2d 4775 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → ⟨(Base‘ndx), dom dom 𝑑⟩ = ⟨(Base‘ndx), 𝑋⟩)
12 simpr 488 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷)
1312opeq2d 4775 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → ⟨(dist‘ndx), 𝑑⟩ = ⟨(dist‘ndx), 𝐷⟩)
1411, 13preq12d 4640 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → {⟨(Base‘ndx), dom dom 𝑑⟩, ⟨(dist‘ndx), 𝑑⟩} = {⟨(Base‘ndx), 𝑋⟩, ⟨(dist‘ndx), 𝐷⟩})
15 tmsval.m . . . . 5 𝑀 = {⟨(Base‘ndx), 𝑋⟩, ⟨(dist‘ndx), 𝐷⟩}
1614, 15eqtr4di 2854 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → {⟨(Base‘ndx), dom dom 𝑑⟩, ⟨(dist‘ndx), 𝑑⟩} = 𝑀)
1712fveq2d 6653 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → (MetOpen‘𝑑) = (MetOpen‘𝐷))
1817opeq2d 4775 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → ⟨(TopSet‘ndx), (MetOpen‘𝑑)⟩ = ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)
1916, 18oveq12d 7157 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → ({⟨(Base‘ndx), dom dom 𝑑⟩, ⟨(dist‘ndx), 𝑑⟩} sSet ⟨(TopSet‘ndx), (MetOpen‘𝑑)⟩) = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
20 fvssunirn 6678 . . . 4 (∞Met‘𝑋) ⊆ ran ∞Met
2120sseli 3914 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ran ∞Met)
22 ovexd 7174 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩) ∈ V)
232, 19, 21, 22fvmptd2 6757 . 2 (𝐷 ∈ (∞Met‘𝑋) → (toMetSp‘𝐷) = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
241, 23syl5eq 2848 1 (𝐷 ∈ (∞Met‘𝑋) → 𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112  Vcvv 3444  {cpr 4530  ⟨cop 4534  ∪ cuni 4803   × cxp 5521  dom cdm 5523  ran crn 5524  ‘cfv 6328  (class class class)co 7139  ℝ*cxr 10667  ndxcnx 16475   sSet csts 16476  Basecbs 16478  TopSetcts 16566  distcds 16569  ∞Metcxmet 20079  MetOpencmopn 20084  toMetSpctms 22929 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-map 8395  df-xr 10672  df-xmet 20087  df-tms 22932 This theorem is referenced by:  tmslem  23092
 Copyright terms: Public domain W3C validator