MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmsval Structured version   Visualization version   GIF version

Theorem tmsval 23685
Description: For any metric there is an associated metric space. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tmsval.m 𝑀 = {⟨(Base‘ndx), 𝑋⟩, ⟨(dist‘ndx), 𝐷⟩}
tmsval.k 𝐾 = (toMetSp‘𝐷)
Assertion
Ref Expression
tmsval (𝐷 ∈ (∞Met‘𝑋) → 𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))

Proof of Theorem tmsval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 tmsval.k . 2 𝐾 = (toMetSp‘𝐷)
2 df-tms 23524 . . 3 toMetSp = (𝑑 ran ∞Met ↦ ({⟨(Base‘ndx), dom dom 𝑑⟩, ⟨(dist‘ndx), 𝑑⟩} sSet ⟨(TopSet‘ndx), (MetOpen‘𝑑)⟩))
3 dmeq 5825 . . . . . . . . 9 (𝑑 = 𝐷 → dom 𝑑 = dom 𝐷)
43dmeqd 5827 . . . . . . . 8 (𝑑 = 𝐷 → dom dom 𝑑 = dom dom 𝐷)
5 xmetf 23531 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
65fdmd 6641 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → dom 𝐷 = (𝑋 × 𝑋))
76dmeqd 5827 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → dom dom 𝐷 = dom (𝑋 × 𝑋))
8 dmxpid 5851 . . . . . . . . 9 dom (𝑋 × 𝑋) = 𝑋
97, 8eqtrdi 2792 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → dom dom 𝐷 = 𝑋)
104, 9sylan9eqr 2798 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = 𝑋)
1110opeq2d 4816 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → ⟨(Base‘ndx), dom dom 𝑑⟩ = ⟨(Base‘ndx), 𝑋⟩)
12 simpr 486 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷)
1312opeq2d 4816 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → ⟨(dist‘ndx), 𝑑⟩ = ⟨(dist‘ndx), 𝐷⟩)
1411, 13preq12d 4681 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → {⟨(Base‘ndx), dom dom 𝑑⟩, ⟨(dist‘ndx), 𝑑⟩} = {⟨(Base‘ndx), 𝑋⟩, ⟨(dist‘ndx), 𝐷⟩})
15 tmsval.m . . . . 5 𝑀 = {⟨(Base‘ndx), 𝑋⟩, ⟨(dist‘ndx), 𝐷⟩}
1614, 15eqtr4di 2794 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → {⟨(Base‘ndx), dom dom 𝑑⟩, ⟨(dist‘ndx), 𝑑⟩} = 𝑀)
1712fveq2d 6808 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → (MetOpen‘𝑑) = (MetOpen‘𝐷))
1817opeq2d 4816 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → ⟨(TopSet‘ndx), (MetOpen‘𝑑)⟩ = ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)
1916, 18oveq12d 7325 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → ({⟨(Base‘ndx), dom dom 𝑑⟩, ⟨(dist‘ndx), 𝑑⟩} sSet ⟨(TopSet‘ndx), (MetOpen‘𝑑)⟩) = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
20 fvssunirn 6835 . . . 4 (∞Met‘𝑋) ⊆ ran ∞Met
2120sseli 3922 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ran ∞Met)
22 ovexd 7342 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩) ∈ V)
232, 19, 21, 22fvmptd2 6915 . 2 (𝐷 ∈ (∞Met‘𝑋) → (toMetSp‘𝐷) = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
241, 23eqtrid 2788 1 (𝐷 ∈ (∞Met‘𝑋) → 𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  Vcvv 3437  {cpr 4567  cop 4571   cuni 4844   × cxp 5598  dom cdm 5600  ran crn 5601  cfv 6458  (class class class)co 7307  *cxr 11058   sSet csts 16913  ndxcnx 16943  Basecbs 16961  TopSetcts 17017  distcds 17020  ∞Metcxmet 20631  MetOpencmopn 20636  toMetSpctms 23521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10977  ax-resscn 10978
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-map 8648  df-xr 11063  df-xmet 20639  df-tms 23524
This theorem is referenced by:  tmslem  23686  tmslemOLD  23687
  Copyright terms: Public domain W3C validator