MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmsval Structured version   Visualization version   GIF version

Theorem tmsval 24514
Description: For any metric there is an associated metric space. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tmsval.m 𝑀 = {⟨(Base‘ndx), 𝑋⟩, ⟨(dist‘ndx), 𝐷⟩}
tmsval.k 𝐾 = (toMetSp‘𝐷)
Assertion
Ref Expression
tmsval (𝐷 ∈ (∞Met‘𝑋) → 𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))

Proof of Theorem tmsval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 tmsval.k . 2 𝐾 = (toMetSp‘𝐷)
2 df-tms 24353 . . 3 toMetSp = (𝑑 ran ∞Met ↦ ({⟨(Base‘ndx), dom dom 𝑑⟩, ⟨(dist‘ndx), 𝑑⟩} sSet ⟨(TopSet‘ndx), (MetOpen‘𝑑)⟩))
3 dmeq 5928 . . . . . . . . 9 (𝑑 = 𝐷 → dom 𝑑 = dom 𝐷)
43dmeqd 5930 . . . . . . . 8 (𝑑 = 𝐷 → dom dom 𝑑 = dom dom 𝐷)
5 xmetf 24360 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
65fdmd 6757 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → dom 𝐷 = (𝑋 × 𝑋))
76dmeqd 5930 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → dom dom 𝐷 = dom (𝑋 × 𝑋))
8 dmxpid 5955 . . . . . . . . 9 dom (𝑋 × 𝑋) = 𝑋
97, 8eqtrdi 2796 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → dom dom 𝐷 = 𝑋)
104, 9sylan9eqr 2802 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = 𝑋)
1110opeq2d 4904 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → ⟨(Base‘ndx), dom dom 𝑑⟩ = ⟨(Base‘ndx), 𝑋⟩)
12 simpr 484 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷)
1312opeq2d 4904 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → ⟨(dist‘ndx), 𝑑⟩ = ⟨(dist‘ndx), 𝐷⟩)
1411, 13preq12d 4766 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → {⟨(Base‘ndx), dom dom 𝑑⟩, ⟨(dist‘ndx), 𝑑⟩} = {⟨(Base‘ndx), 𝑋⟩, ⟨(dist‘ndx), 𝐷⟩})
15 tmsval.m . . . . 5 𝑀 = {⟨(Base‘ndx), 𝑋⟩, ⟨(dist‘ndx), 𝐷⟩}
1614, 15eqtr4di 2798 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → {⟨(Base‘ndx), dom dom 𝑑⟩, ⟨(dist‘ndx), 𝑑⟩} = 𝑀)
1712fveq2d 6924 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → (MetOpen‘𝑑) = (MetOpen‘𝐷))
1817opeq2d 4904 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → ⟨(TopSet‘ndx), (MetOpen‘𝑑)⟩ = ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)
1916, 18oveq12d 7466 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → ({⟨(Base‘ndx), dom dom 𝑑⟩, ⟨(dist‘ndx), 𝑑⟩} sSet ⟨(TopSet‘ndx), (MetOpen‘𝑑)⟩) = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
20 fvssunirn 6953 . . . 4 (∞Met‘𝑋) ⊆ ran ∞Met
2120sseli 4004 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ran ∞Met)
22 ovexd 7483 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩) ∈ V)
232, 19, 21, 22fvmptd2 7037 . 2 (𝐷 ∈ (∞Met‘𝑋) → (toMetSp‘𝐷) = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
241, 23eqtrid 2792 1 (𝐷 ∈ (∞Met‘𝑋) → 𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  {cpr 4650  cop 4654   cuni 4931   × cxp 5698  dom cdm 5700  ran crn 5701  cfv 6573  (class class class)co 7448  *cxr 11323   sSet csts 17210  ndxcnx 17240  Basecbs 17258  TopSetcts 17317  distcds 17320  ∞Metcxmet 21372  MetOpencmopn 21377  toMetSpctms 24350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-xr 11328  df-xmet 21380  df-tms 24353
This theorem is referenced by:  tmslem  24515  tmslemOLD  24516
  Copyright terms: Public domain W3C validator