MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmsval Structured version   Visualization version   GIF version

Theorem tmsval 23617
Description: For any metric there is an associated metric space. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tmsval.m 𝑀 = {⟨(Base‘ndx), 𝑋⟩, ⟨(dist‘ndx), 𝐷⟩}
tmsval.k 𝐾 = (toMetSp‘𝐷)
Assertion
Ref Expression
tmsval (𝐷 ∈ (∞Met‘𝑋) → 𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))

Proof of Theorem tmsval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 tmsval.k . 2 𝐾 = (toMetSp‘𝐷)
2 df-tms 23456 . . 3 toMetSp = (𝑑 ran ∞Met ↦ ({⟨(Base‘ndx), dom dom 𝑑⟩, ⟨(dist‘ndx), 𝑑⟩} sSet ⟨(TopSet‘ndx), (MetOpen‘𝑑)⟩))
3 dmeq 5809 . . . . . . . . 9 (𝑑 = 𝐷 → dom 𝑑 = dom 𝐷)
43dmeqd 5811 . . . . . . . 8 (𝑑 = 𝐷 → dom dom 𝑑 = dom dom 𝐷)
5 xmetf 23463 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
65fdmd 6607 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → dom 𝐷 = (𝑋 × 𝑋))
76dmeqd 5811 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → dom dom 𝐷 = dom (𝑋 × 𝑋))
8 dmxpid 5836 . . . . . . . . 9 dom (𝑋 × 𝑋) = 𝑋
97, 8eqtrdi 2795 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → dom dom 𝐷 = 𝑋)
104, 9sylan9eqr 2801 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = 𝑋)
1110opeq2d 4816 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → ⟨(Base‘ndx), dom dom 𝑑⟩ = ⟨(Base‘ndx), 𝑋⟩)
12 simpr 484 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷)
1312opeq2d 4816 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → ⟨(dist‘ndx), 𝑑⟩ = ⟨(dist‘ndx), 𝐷⟩)
1411, 13preq12d 4682 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → {⟨(Base‘ndx), dom dom 𝑑⟩, ⟨(dist‘ndx), 𝑑⟩} = {⟨(Base‘ndx), 𝑋⟩, ⟨(dist‘ndx), 𝐷⟩})
15 tmsval.m . . . . 5 𝑀 = {⟨(Base‘ndx), 𝑋⟩, ⟨(dist‘ndx), 𝐷⟩}
1614, 15eqtr4di 2797 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → {⟨(Base‘ndx), dom dom 𝑑⟩, ⟨(dist‘ndx), 𝑑⟩} = 𝑀)
1712fveq2d 6772 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → (MetOpen‘𝑑) = (MetOpen‘𝐷))
1817opeq2d 4816 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → ⟨(TopSet‘ndx), (MetOpen‘𝑑)⟩ = ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)
1916, 18oveq12d 7286 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → ({⟨(Base‘ndx), dom dom 𝑑⟩, ⟨(dist‘ndx), 𝑑⟩} sSet ⟨(TopSet‘ndx), (MetOpen‘𝑑)⟩) = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
20 fvssunirn 6797 . . . 4 (∞Met‘𝑋) ⊆ ran ∞Met
2120sseli 3921 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ran ∞Met)
22 ovexd 7303 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩) ∈ V)
232, 19, 21, 22fvmptd2 6877 . 2 (𝐷 ∈ (∞Met‘𝑋) → (toMetSp‘𝐷) = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
241, 23eqtrid 2791 1 (𝐷 ∈ (∞Met‘𝑋) → 𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  Vcvv 3430  {cpr 4568  cop 4572   cuni 4844   × cxp 5586  dom cdm 5588  ran crn 5589  cfv 6430  (class class class)co 7268  *cxr 10992   sSet csts 16845  ndxcnx 16875  Basecbs 16893  TopSetcts 16949  distcds 16952  ∞Metcxmet 20563  MetOpencmopn 20568  toMetSpctms 23453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-map 8591  df-xr 10997  df-xmet 20571  df-tms 23456
This theorem is referenced by:  tmslem  23618  tmslemOLD  23619
  Copyright terms: Public domain W3C validator