MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmsval Structured version   Visualization version   GIF version

Theorem tmsval 24493
Description: For any metric there is an associated metric space. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tmsval.m 𝑀 = {⟨(Base‘ndx), 𝑋⟩, ⟨(dist‘ndx), 𝐷⟩}
tmsval.k 𝐾 = (toMetSp‘𝐷)
Assertion
Ref Expression
tmsval (𝐷 ∈ (∞Met‘𝑋) → 𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))

Proof of Theorem tmsval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 tmsval.k . 2 𝐾 = (toMetSp‘𝐷)
2 df-tms 24332 . . 3 toMetSp = (𝑑 ran ∞Met ↦ ({⟨(Base‘ndx), dom dom 𝑑⟩, ⟨(dist‘ndx), 𝑑⟩} sSet ⟨(TopSet‘ndx), (MetOpen‘𝑑)⟩))
3 dmeq 5914 . . . . . . . . 9 (𝑑 = 𝐷 → dom 𝑑 = dom 𝐷)
43dmeqd 5916 . . . . . . . 8 (𝑑 = 𝐷 → dom dom 𝑑 = dom dom 𝐷)
5 xmetf 24339 . . . . . . . . . . 11 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
65fdmd 6746 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → dom 𝐷 = (𝑋 × 𝑋))
76dmeqd 5916 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → dom dom 𝐷 = dom (𝑋 × 𝑋))
8 dmxpid 5941 . . . . . . . . 9 dom (𝑋 × 𝑋) = 𝑋
97, 8eqtrdi 2793 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → dom dom 𝐷 = 𝑋)
104, 9sylan9eqr 2799 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → dom dom 𝑑 = 𝑋)
1110opeq2d 4880 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → ⟨(Base‘ndx), dom dom 𝑑⟩ = ⟨(Base‘ndx), 𝑋⟩)
12 simpr 484 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷)
1312opeq2d 4880 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → ⟨(dist‘ndx), 𝑑⟩ = ⟨(dist‘ndx), 𝐷⟩)
1411, 13preq12d 4741 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → {⟨(Base‘ndx), dom dom 𝑑⟩, ⟨(dist‘ndx), 𝑑⟩} = {⟨(Base‘ndx), 𝑋⟩, ⟨(dist‘ndx), 𝐷⟩})
15 tmsval.m . . . . 5 𝑀 = {⟨(Base‘ndx), 𝑋⟩, ⟨(dist‘ndx), 𝐷⟩}
1614, 15eqtr4di 2795 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → {⟨(Base‘ndx), dom dom 𝑑⟩, ⟨(dist‘ndx), 𝑑⟩} = 𝑀)
1712fveq2d 6910 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → (MetOpen‘𝑑) = (MetOpen‘𝐷))
1817opeq2d 4880 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → ⟨(TopSet‘ndx), (MetOpen‘𝑑)⟩ = ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)
1916, 18oveq12d 7449 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑑 = 𝐷) → ({⟨(Base‘ndx), dom dom 𝑑⟩, ⟨(dist‘ndx), 𝑑⟩} sSet ⟨(TopSet‘ndx), (MetOpen‘𝑑)⟩) = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
20 fvssunirn 6939 . . . 4 (∞Met‘𝑋) ⊆ ran ∞Met
2120sseli 3979 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ran ∞Met)
22 ovexd 7466 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩) ∈ V)
232, 19, 21, 22fvmptd2 7024 . 2 (𝐷 ∈ (∞Met‘𝑋) → (toMetSp‘𝐷) = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
241, 23eqtrid 2789 1 (𝐷 ∈ (∞Met‘𝑋) → 𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  {cpr 4628  cop 4632   cuni 4907   × cxp 5683  dom cdm 5685  ran crn 5686  cfv 6561  (class class class)co 7431  *cxr 11294   sSet csts 17200  ndxcnx 17230  Basecbs 17247  TopSetcts 17303  distcds 17306  ∞Metcxmet 21349  MetOpencmopn 21354  toMetSpctms 24329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8868  df-xr 11299  df-xmet 21357  df-tms 24332
This theorem is referenced by:  tmslem  24494  tmslemOLD  24495
  Copyright terms: Public domain W3C validator