| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tmslem | Structured version Visualization version GIF version | ||
| Description: Lemma for tmsbas 24408, tmsds 24409, and tmstopn 24410. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| tmsval.m | ⊢ 𝑀 = {〈(Base‘ndx), 𝑋〉, 〈(dist‘ndx), 𝐷〉} |
| tmsval.k | ⊢ 𝐾 = (toMetSp‘𝐷) |
| Ref | Expression |
|---|---|
| tmslem | ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝐷 = (dist‘𝐾) ∧ (MetOpen‘𝐷) = (TopOpen‘𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6865 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) | |
| 2 | tmsval.m | . . . . 5 ⊢ 𝑀 = {〈(Base‘ndx), 𝑋〉, 〈(dist‘ndx), 𝐷〉} | |
| 3 | basendxltdsndx 17302 | . . . . 5 ⊢ (Base‘ndx) < (dist‘ndx) | |
| 4 | dsndxnn 17301 | . . . . 5 ⊢ (dist‘ndx) ∈ ℕ | |
| 5 | 2, 3, 4 | 2strbas 17149 | . . . 4 ⊢ (𝑋 ∈ dom ∞Met → 𝑋 = (Base‘𝑀)) |
| 6 | 1, 5 | syl 17 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘𝑀)) |
| 7 | xmetf 24254 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | |
| 8 | ffn 6659 | . . . . 5 ⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → 𝐷 Fn (𝑋 × 𝑋)) | |
| 9 | fnresdm 6608 | . . . . 5 ⊢ (𝐷 Fn (𝑋 × 𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = 𝐷) | |
| 10 | 7, 8, 9 | 3syl 18 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = 𝐷) |
| 11 | dsid 17300 | . . . . . 6 ⊢ dist = Slot (dist‘ndx) | |
| 12 | 2, 3, 4, 11 | 2strop 17150 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = (dist‘𝑀)) |
| 13 | 12 | reseq1d 5934 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
| 14 | 10, 13 | eqtr3d 2770 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
| 15 | tmsval.k | . . . 4 ⊢ 𝐾 = (toMetSp‘𝐷) | |
| 16 | 2, 15 | tmsval 24406 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) |
| 17 | 6, 14, 16 | setsmsbas 24400 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘𝐾)) |
| 18 | 6, 14, 16 | setsmsds 24401 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (dist‘𝑀) = (dist‘𝐾)) |
| 19 | 12, 18 | eqtrd 2768 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = (dist‘𝐾)) |
| 20 | prex 5379 | . . . . 5 ⊢ {〈(Base‘ndx), 𝑋〉, 〈(dist‘ndx), 𝐷〉} ∈ V | |
| 21 | 2, 20 | eqeltri 2829 | . . . 4 ⊢ 𝑀 ∈ V |
| 22 | 21 | a1i 11 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑀 ∈ V) |
| 23 | 6, 14, 16, 22 | setsmstopn 24403 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘𝐷) = (TopOpen‘𝐾)) |
| 24 | 17, 19, 23 | 3jca 1128 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝐷 = (dist‘𝐾) ∧ (MetOpen‘𝐷) = (TopOpen‘𝐾))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3438 {cpr 4579 〈cop 4583 × cxp 5619 dom cdm 5621 ↾ cres 5623 Fn wfn 6484 ⟶wf 6485 ‘cfv 6489 ℝ*cxr 11155 ndxcnx 17114 Basecbs 17130 distcds 17180 TopOpenctopn 17335 ∞Metcxmet 21286 MetOpencmopn 21291 toMetSpctms 24244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-sup 9336 df-inf 9337 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-z 12479 df-dec 12599 df-uz 12743 df-q 12857 df-rp 12901 df-xneg 13021 df-xadd 13022 df-xmul 13023 df-fz 13418 df-struct 17068 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-tset 17190 df-ds 17193 df-rest 17336 df-topn 17337 df-topgen 17357 df-psmet 21293 df-xmet 21294 df-bl 21296 df-mopn 21297 df-top 22819 df-topon 22836 df-bases 22871 df-tms 24247 |
| This theorem is referenced by: tmsbas 24408 tmsds 24409 tmstopn 24410 |
| Copyright terms: Public domain | W3C validator |