| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tmslem | Structured version Visualization version GIF version | ||
| Description: Lemma for tmsbas 24371, tmsds 24372, and tmstopn 24373. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| tmsval.m | ⊢ 𝑀 = {〈(Base‘ndx), 𝑋〉, 〈(dist‘ndx), 𝐷〉} |
| tmsval.k | ⊢ 𝐾 = (toMetSp‘𝐷) |
| Ref | Expression |
|---|---|
| tmslem | ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝐷 = (dist‘𝐾) ∧ (MetOpen‘𝐷) = (TopOpen‘𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6895 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) | |
| 2 | tmsval.m | . . . . 5 ⊢ 𝑀 = {〈(Base‘ndx), 𝑋〉, 〈(dist‘ndx), 𝐷〉} | |
| 3 | basendxltdsndx 17351 | . . . . 5 ⊢ (Base‘ndx) < (dist‘ndx) | |
| 4 | dsndxnn 17350 | . . . . 5 ⊢ (dist‘ndx) ∈ ℕ | |
| 5 | 2, 3, 4 | 2strbas 17198 | . . . 4 ⊢ (𝑋 ∈ dom ∞Met → 𝑋 = (Base‘𝑀)) |
| 6 | 1, 5 | syl 17 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘𝑀)) |
| 7 | xmetf 24217 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | |
| 8 | ffn 6688 | . . . . 5 ⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → 𝐷 Fn (𝑋 × 𝑋)) | |
| 9 | fnresdm 6637 | . . . . 5 ⊢ (𝐷 Fn (𝑋 × 𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = 𝐷) | |
| 10 | 7, 8, 9 | 3syl 18 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = 𝐷) |
| 11 | dsid 17349 | . . . . . 6 ⊢ dist = Slot (dist‘ndx) | |
| 12 | 2, 3, 4, 11 | 2strop 17199 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = (dist‘𝑀)) |
| 13 | 12 | reseq1d 5949 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
| 14 | 10, 13 | eqtr3d 2766 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
| 15 | tmsval.k | . . . 4 ⊢ 𝐾 = (toMetSp‘𝐷) | |
| 16 | 2, 15 | tmsval 24369 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) |
| 17 | 6, 14, 16 | setsmsbas 24363 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘𝐾)) |
| 18 | 6, 14, 16 | setsmsds 24364 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (dist‘𝑀) = (dist‘𝐾)) |
| 19 | 12, 18 | eqtrd 2764 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = (dist‘𝐾)) |
| 20 | prex 5392 | . . . . 5 ⊢ {〈(Base‘ndx), 𝑋〉, 〈(dist‘ndx), 𝐷〉} ∈ V | |
| 21 | 2, 20 | eqeltri 2824 | . . . 4 ⊢ 𝑀 ∈ V |
| 22 | 21 | a1i 11 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑀 ∈ V) |
| 23 | 6, 14, 16, 22 | setsmstopn 24366 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘𝐷) = (TopOpen‘𝐾)) |
| 24 | 17, 19, 23 | 3jca 1128 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝐷 = (dist‘𝐾) ∧ (MetOpen‘𝐷) = (TopOpen‘𝐾))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3447 {cpr 4591 〈cop 4595 × cxp 5636 dom cdm 5638 ↾ cres 5640 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 ℝ*cxr 11207 ndxcnx 17163 Basecbs 17179 distcds 17229 TopOpenctopn 17384 ∞Metcxmet 21249 MetOpencmopn 21254 toMetSpctms 24207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-tset 17239 df-ds 17242 df-rest 17385 df-topn 17386 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-bl 21259 df-mopn 21260 df-top 22781 df-topon 22798 df-bases 22833 df-tms 24210 |
| This theorem is referenced by: tmsbas 24371 tmsds 24372 tmstopn 24373 |
| Copyright terms: Public domain | W3C validator |