Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tmslem | Structured version Visualization version GIF version |
Description: Lemma for tmsbas 23639, tmsds 23640, and tmstopn 23641. (Contributed by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
tmsval.m | ⊢ 𝑀 = {〈(Base‘ndx), 𝑋〉, 〈(dist‘ndx), 𝐷〉} |
tmsval.k | ⊢ 𝐾 = (toMetSp‘𝐷) |
Ref | Expression |
---|---|
tmslem | ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝐷 = (dist‘𝐾) ∧ (MetOpen‘𝐷) = (TopOpen‘𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6806 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) | |
2 | tmsval.m | . . . . 5 ⊢ 𝑀 = {〈(Base‘ndx), 𝑋〉, 〈(dist‘ndx), 𝐷〉} | |
3 | basendxltdsndx 17098 | . . . . 5 ⊢ (Base‘ndx) < (dist‘ndx) | |
4 | dsndxnn 17097 | . . . . 5 ⊢ (dist‘ndx) ∈ ℕ | |
5 | 2, 3, 4 | 2strbas1 16939 | . . . 4 ⊢ (𝑋 ∈ dom ∞Met → 𝑋 = (Base‘𝑀)) |
6 | 1, 5 | syl 17 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘𝑀)) |
7 | xmetf 23482 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | |
8 | ffn 6600 | . . . . 5 ⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → 𝐷 Fn (𝑋 × 𝑋)) | |
9 | fnresdm 6551 | . . . . 5 ⊢ (𝐷 Fn (𝑋 × 𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = 𝐷) | |
10 | 7, 8, 9 | 3syl 18 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = 𝐷) |
11 | dsid 17096 | . . . . . 6 ⊢ dist = Slot (dist‘ndx) | |
12 | 2, 3, 4, 11 | 2strop1 16940 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = (dist‘𝑀)) |
13 | 12 | reseq1d 5890 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
14 | 10, 13 | eqtr3d 2780 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
15 | tmsval.k | . . . 4 ⊢ 𝐾 = (toMetSp‘𝐷) | |
16 | 2, 15 | tmsval 23636 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) |
17 | 6, 14, 16 | setsmsbas 23628 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘𝐾)) |
18 | 6, 14, 16 | setsmsds 23630 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (dist‘𝑀) = (dist‘𝐾)) |
19 | 12, 18 | eqtrd 2778 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = (dist‘𝐾)) |
20 | prex 5355 | . . . . 5 ⊢ {〈(Base‘ndx), 𝑋〉, 〈(dist‘ndx), 𝐷〉} ∈ V | |
21 | 2, 20 | eqeltri 2835 | . . . 4 ⊢ 𝑀 ∈ V |
22 | 21 | a1i 11 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑀 ∈ V) |
23 | 6, 14, 16, 22 | setsmstopn 23633 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘𝐷) = (TopOpen‘𝐾)) |
24 | 17, 19, 23 | 3jca 1127 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝐷 = (dist‘𝐾) ∧ (MetOpen‘𝐷) = (TopOpen‘𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 Vcvv 3432 {cpr 4563 〈cop 4567 × cxp 5587 dom cdm 5589 ↾ cres 5591 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 ℝ*cxr 11008 ndxcnx 16894 Basecbs 16912 distcds 16971 TopOpenctopn 17132 ∞Metcxmet 20582 MetOpencmopn 20587 toMetSpctms 23472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-tset 16981 df-ds 16984 df-rest 17133 df-topn 17134 df-topgen 17154 df-psmet 20589 df-xmet 20590 df-bl 20592 df-mopn 20593 df-top 22043 df-topon 22060 df-bases 22096 df-tms 23475 |
This theorem is referenced by: tmsbas 23639 tmsds 23640 tmstopn 23641 |
Copyright terms: Public domain | W3C validator |