MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmslem Structured version   Visualization version   GIF version

Theorem tmslem 24390
Description: Lemma for tmsbas 24391, tmsds 24392, and tmstopn 24393. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tmsval.m 𝑀 = {⟨(Base‘ndx), 𝑋⟩, ⟨(dist‘ndx), 𝐷⟩}
tmsval.k 𝐾 = (toMetSp‘𝐷)
Assertion
Ref Expression
tmslem (𝐷 ∈ (∞Met‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝐷 = (dist‘𝐾) ∧ (MetOpen‘𝐷) = (TopOpen‘𝐾)))

Proof of Theorem tmslem
StepHypRef Expression
1 elfvdm 6851 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
2 tmsval.m . . . . 5 𝑀 = {⟨(Base‘ndx), 𝑋⟩, ⟨(dist‘ndx), 𝐷⟩}
3 basendxltdsndx 17284 . . . . 5 (Base‘ndx) < (dist‘ndx)
4 dsndxnn 17283 . . . . 5 (dist‘ndx) ∈ ℕ
52, 3, 42strbas 17131 . . . 4 (𝑋 ∈ dom ∞Met → 𝑋 = (Base‘𝑀))
61, 5syl 17 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘𝑀))
7 xmetf 24237 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
8 ffn 6647 . . . . 5 (𝐷:(𝑋 × 𝑋)⟶ℝ*𝐷 Fn (𝑋 × 𝑋))
9 fnresdm 6596 . . . . 5 (𝐷 Fn (𝑋 × 𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = 𝐷)
107, 8, 93syl 18 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = 𝐷)
11 dsid 17282 . . . . . 6 dist = Slot (dist‘ndx)
122, 3, 4, 112strop 17132 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = (dist‘𝑀))
1312reseq1d 5924 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
1410, 13eqtr3d 2767 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
15 tmsval.k . . . 4 𝐾 = (toMetSp‘𝐷)
162, 15tmsval 24389 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
176, 14, 16setsmsbas 24383 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘𝐾))
186, 14, 16setsmsds 24384 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (dist‘𝑀) = (dist‘𝐾))
1912, 18eqtrd 2765 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = (dist‘𝐾))
20 prex 5373 . . . . 5 {⟨(Base‘ndx), 𝑋⟩, ⟨(dist‘ndx), 𝐷⟩} ∈ V
212, 20eqeltri 2825 . . . 4 𝑀 ∈ V
2221a1i 11 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝑀 ∈ V)
236, 14, 16, 22setsmstopn 24386 . 2 (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘𝐷) = (TopOpen‘𝐾))
2417, 19, 233jca 1128 1 (𝐷 ∈ (∞Met‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝐷 = (dist‘𝐾) ∧ (MetOpen‘𝐷) = (TopOpen‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2110  Vcvv 3434  {cpr 4576  cop 4580   × cxp 5612  dom cdm 5614  cres 5616   Fn wfn 6472  wf 6473  cfv 6477  *cxr 11137  ndxcnx 17096  Basecbs 17112  distcds 17162  TopOpenctopn 17317  ∞Metcxmet 21269  MetOpencmopn 21274  toMetSpctms 24227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-fz 13400  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-tset 17172  df-ds 17175  df-rest 17318  df-topn 17319  df-topgen 17339  df-psmet 21276  df-xmet 21277  df-bl 21279  df-mopn 21280  df-top 22802  df-topon 22819  df-bases 22854  df-tms 24230
This theorem is referenced by:  tmsbas  24391  tmsds  24392  tmstopn  24393
  Copyright terms: Public domain W3C validator