MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  letop Structured version   Visualization version   GIF version

Theorem letop 22338
Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
letop (ordTop‘ ≤ ) ∈ Top

Proof of Theorem letop
StepHypRef Expression
1 letopon 22337 . 2 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
21topontopi 22045 1 (ordTop‘ ≤ ) ∈ Top
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  cfv 6430  *cxr 10992  cle 10994  ordTopcordt 17191  Topctop 22023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-pre-lttri 10929  ax-pre-lttrn 10930
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-om 7701  df-1o 8281  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-fi 9131  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-topgen 17135  df-ordt 17193  df-ps 18265  df-tsr 18266  df-top 22024  df-topon 22041  df-bases 22077
This theorem is referenced by:  iccordt  22346  iocpnfordt  22347  icomnfordt  22348  iooordt  22349  lecldbas  22351  xrtgioo  23950  xrsmopn  23956  xrge0tsms  23978  xrlimcnp  26099  xrge0tsmsd  31296  pnfneige0  31880  lmxrge0  31881  xlimclim  43319
  Copyright terms: Public domain W3C validator