| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > letop | Structured version Visualization version GIF version | ||
| Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| letop | ⊢ (ordTop‘ ≤ ) ∈ Top |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | letopon 23121 | . 2 ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) | |
| 2 | 1 | topontopi 22831 | 1 ⊢ (ordTop‘ ≤ ) ∈ Top |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 ‘cfv 6486 ℝ*cxr 11152 ≤ cle 11154 ordTopcordt 17405 Topctop 22809 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-pre-lttri 11087 ax-pre-lttrn 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-om 7803 df-1o 8391 df-2o 8392 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fi 9302 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-topgen 17349 df-ordt 17407 df-ps 18474 df-tsr 18475 df-top 22810 df-topon 22827 df-bases 22862 |
| This theorem is referenced by: iccordt 23130 iocpnfordt 23131 icomnfordt 23132 iooordt 23133 lecldbas 23135 xrtgioo 24723 xrsmopn 24729 xrge0tsms 24751 xrlimcnp 26906 xrge0tsmsd 33049 pnfneige0 33985 lmxrge0 33986 xlimclim 45946 |
| Copyright terms: Public domain | W3C validator |