| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfldtop | Structured version Visualization version GIF version | ||
| Description: The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| cnfldtopn.1 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| Ref | Expression |
|---|---|
| cnfldtop | ⊢ 𝐽 ∈ Top |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldtopn.1 | . . 3 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 2 | 1 | cnfldtopon 24697 | . 2 ⊢ 𝐽 ∈ (TopOn‘ℂ) |
| 3 | 2 | topontopi 22830 | 1 ⊢ 𝐽 ∈ Top |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ‘cfv 6481 ℂcc 11004 TopOpenctopn 17325 ℂfldccnfld 21291 Topctop 22808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-fz 13408 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-rest 17326 df-topn 17327 df-topgen 17347 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-xms 24235 df-ms 24236 |
| This theorem is referenced by: cnopn 24701 rerest 24719 recld2 24730 zdis 24732 reperflem 24734 metdcn 24756 ngnmcncn 24761 metdscn2 24773 cncfcnvcn 24846 icchmeo 24865 icchmeoOLD 24866 cnrehmeo 24878 cnrehmeoOLD 24879 cnheiborlem 24880 cnheibor 24881 cnllycmp 24882 evth 24885 reparphti 24923 reparphtiOLD 24924 cncmet 25249 resscdrg 25285 mbfimaopn2 25585 ellimc2 25805 limcnlp 25806 limcflflem 25808 limcflf 25809 limccnp 25819 limciun 25822 dvbss 25829 perfdvf 25831 dvreslem 25837 dvres2lem 25838 dvidlem 25843 dvcnp2 25848 dvcnp2OLD 25849 dvnres 25860 dvaddbr 25867 dvmulbr 25868 dvmulbrOLD 25869 dvrec 25886 dvmptres 25894 dveflem 25910 dvlipcn 25926 dvcnvrelem2 25950 dvply1 26218 ulmdvlem3 26338 psercn 26363 abelth 26378 dvlog 26587 dvlog2 26589 efopnlem2 26593 efopn 26594 efrlim 26906 efrlimOLD 26907 lgamucov 26975 lgamucov2 26976 nmcnc 30676 raddcn 33942 lmlim 33960 cvxpconn 35286 cvxsconn 35287 cnllysconn 35289 ivthALT 36379 knoppcnlem10 36546 broucube 37693 binomcxplemdvbinom 44445 binomcxplemnotnn0 44448 climreeq 45712 limcrecl 45728 islpcn 45736 limcresiooub 45739 limcresioolb 45740 lptioo2cn 45742 lptioo1cn 45743 limclner 45748 fsumcncf 45975 ioccncflimc 45982 cncfuni 45983 icocncflimc 45986 cncfiooicclem1 45990 cncfiooicc 45991 itgsubsticclem 46072 dirkercncflem2 46201 dirkercncflem4 46203 dirkercncf 46204 fourierdlem32 46236 fourierdlem33 46237 fourierdlem48 46251 fourierdlem49 46252 fourierdlem62 46265 fourierdlem93 46296 fourierdlem101 46304 fourierdlem113 46316 fouriercnp 46323 fouriersw 46328 |
| Copyright terms: Public domain | W3C validator |