| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfldtop | Structured version Visualization version GIF version | ||
| Description: The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| cnfldtopn.1 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| Ref | Expression |
|---|---|
| cnfldtop | ⊢ 𝐽 ∈ Top |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldtopn.1 | . . 3 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 2 | 1 | cnfldtopon 24668 | . 2 ⊢ 𝐽 ∈ (TopOn‘ℂ) |
| 3 | 2 | topontopi 22800 | 1 ⊢ 𝐽 ∈ Top |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ‘cfv 6482 ℂcc 11007 TopOpenctopn 17325 ℂfldccnfld 21261 Topctop 22778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-fz 13411 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-rest 17326 df-topn 17327 df-topgen 17347 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-xms 24206 df-ms 24207 |
| This theorem is referenced by: cnopn 24672 rerest 24690 recld2 24701 zdis 24703 reperflem 24705 metdcn 24727 ngnmcncn 24732 metdscn2 24744 cncfcnvcn 24817 icchmeo 24836 icchmeoOLD 24837 cnrehmeo 24849 cnrehmeoOLD 24850 cnheiborlem 24851 cnheibor 24852 cnllycmp 24853 evth 24856 reparphti 24894 reparphtiOLD 24895 cncmet 25220 resscdrg 25256 mbfimaopn2 25556 ellimc2 25776 limcnlp 25777 limcflflem 25779 limcflf 25780 limccnp 25790 limciun 25793 dvbss 25800 perfdvf 25802 dvreslem 25808 dvres2lem 25809 dvidlem 25814 dvcnp2 25819 dvcnp2OLD 25820 dvnres 25831 dvaddbr 25838 dvmulbr 25839 dvmulbrOLD 25840 dvrec 25857 dvmptres 25865 dveflem 25881 dvlipcn 25897 dvcnvrelem2 25921 dvply1 26189 ulmdvlem3 26309 psercn 26334 abelth 26349 dvlog 26558 dvlog2 26560 efopnlem2 26564 efopn 26565 efrlim 26877 efrlimOLD 26878 lgamucov 26946 lgamucov2 26947 nmcnc 30644 raddcn 33912 lmlim 33930 cvxpconn 35235 cvxsconn 35236 cnllysconn 35238 ivthALT 36329 knoppcnlem10 36496 broucube 37654 binomcxplemdvbinom 44346 binomcxplemnotnn0 44349 climreeq 45614 limcrecl 45630 islpcn 45640 limcresiooub 45643 limcresioolb 45644 lptioo2cn 45646 lptioo1cn 45647 limclner 45652 fsumcncf 45879 ioccncflimc 45886 cncfuni 45887 icocncflimc 45890 cncfiooicclem1 45894 cncfiooicc 45895 itgsubsticclem 45976 dirkercncflem2 46105 dirkercncflem4 46107 dirkercncf 46108 fourierdlem32 46140 fourierdlem33 46141 fourierdlem48 46155 fourierdlem49 46156 fourierdlem62 46169 fourierdlem93 46200 fourierdlem101 46208 fourierdlem113 46220 fouriercnp 46227 fouriersw 46232 |
| Copyright terms: Public domain | W3C validator |