![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnfldtop | Structured version Visualization version GIF version |
Description: The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
cnfldtopn.1 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
cnfldtop | ⊢ 𝐽 ∈ Top |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfldtopn.1 | . . 3 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
2 | 1 | cnfldtopon 22914 | . 2 ⊢ 𝐽 ∈ (TopOn‘ℂ) |
3 | 2 | topontopi 21048 | 1 ⊢ 𝐽 ∈ Top |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∈ wcel 2157 ‘cfv 6101 ℂcc 10222 TopOpenctopn 16397 ℂfldccnfld 20068 Topctop 21026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-oadd 7803 df-er 7982 df-map 8097 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-sup 8590 df-inf 8591 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-7 11381 df-8 11382 df-9 11383 df-n0 11581 df-z 11667 df-dec 11784 df-uz 11931 df-q 12034 df-rp 12075 df-xneg 12193 df-xadd 12194 df-xmul 12195 df-fz 12581 df-seq 13056 df-exp 13115 df-cj 14180 df-re 14181 df-im 14182 df-sqrt 14316 df-abs 14317 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-plusg 16280 df-mulr 16281 df-starv 16282 df-tset 16286 df-ple 16287 df-ds 16289 df-unif 16290 df-rest 16398 df-topn 16399 df-topgen 16419 df-psmet 20060 df-xmet 20061 df-met 20062 df-bl 20063 df-mopn 20064 df-cnfld 20069 df-top 21027 df-topon 21044 df-topsp 21066 df-bases 21079 df-xms 22453 df-ms 22454 |
This theorem is referenced by: cnopn 22918 rerest 22935 recld2 22945 zdis 22947 reperflem 22949 metdcn 22971 ngnmcncn 22976 metdscn2 22988 cncfcnvcn 23052 icchmeo 23068 cnrehmeo 23080 cnheiborlem 23081 cnheibor 23082 cnllycmp 23083 evth 23086 reparphti 23124 cncmet 23448 resscdrg 23484 mbfimaopn2 23765 ellimc2 23982 limcnlp 23983 limcflflem 23985 limcflf 23986 limccnp 23996 limciun 23999 dvbss 24006 perfdvf 24008 dvreslem 24014 dvres2lem 24015 dvidlem 24020 dvcnp2 24024 dvnres 24035 dvaddbr 24042 dvmulbr 24043 dvrec 24059 dvmptres 24067 dveflem 24083 dvlipcn 24098 dvcnvrelem2 24122 dvply1 24380 ulmdvlem3 24497 psercn 24521 abelth 24536 dvlog 24738 dvlog2 24740 efopnlem2 24744 efopn 24745 efrlim 25048 lgamucov 25116 lgamucov2 25117 nmcnc 28076 raddcn 30491 lmlim 30509 cvxpconn 31741 cvxsconn 31742 cnllysconn 31744 ivthALT 32842 broucube 33932 binomcxplemdvbinom 39334 binomcxplemnotnn0 39337 climreeq 40589 limcrecl 40605 islpcn 40615 limcresiooub 40618 limcresioolb 40619 lptioo2cn 40621 lptioo1cn 40622 limclner 40627 fsumcncf 40835 ioccncflimc 40842 cncfuni 40843 icocncflimc 40846 cncfiooicclem1 40850 cncfiooicc 40851 itgsubsticclem 40934 dirkercncflem2 41064 dirkercncflem4 41066 dirkercncf 41067 fourierdlem32 41099 fourierdlem33 41100 fourierdlem48 41114 fourierdlem49 41115 fourierdlem62 41128 fourierdlem93 41159 fourierdlem101 41167 fourierdlem113 41179 fouriercnp 41186 fouriersw 41191 |
Copyright terms: Public domain | W3C validator |