| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfldtop | Structured version Visualization version GIF version | ||
| Description: The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| cnfldtopn.1 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| Ref | Expression |
|---|---|
| cnfldtop | ⊢ 𝐽 ∈ Top |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldtopn.1 | . . 3 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 2 | 1 | cnfldtopon 24704 | . 2 ⊢ 𝐽 ∈ (TopOn‘ℂ) |
| 3 | 2 | topontopi 22836 | 1 ⊢ 𝐽 ∈ Top |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ‘cfv 6499 ℂcc 11044 TopOpenctopn 17361 ℂfldccnfld 21297 Topctop 22814 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-pre-sup 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-div 11814 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-5 12230 df-6 12231 df-7 12232 df-8 12233 df-9 12234 df-n0 12421 df-z 12508 df-dec 12628 df-uz 12772 df-q 12886 df-rp 12930 df-xneg 13050 df-xadd 13051 df-xmul 13052 df-fz 13447 df-seq 13945 df-exp 14005 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-struct 17094 df-slot 17129 df-ndx 17141 df-base 17157 df-plusg 17210 df-mulr 17211 df-starv 17212 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-rest 17362 df-topn 17363 df-topgen 17383 df-psmet 21289 df-xmet 21290 df-met 21291 df-bl 21292 df-mopn 21293 df-cnfld 21298 df-top 22815 df-topon 22832 df-topsp 22854 df-bases 22867 df-xms 24242 df-ms 24243 |
| This theorem is referenced by: cnopn 24708 rerest 24726 recld2 24737 zdis 24739 reperflem 24741 metdcn 24763 ngnmcncn 24768 metdscn2 24780 cncfcnvcn 24853 icchmeo 24872 icchmeoOLD 24873 cnrehmeo 24885 cnrehmeoOLD 24886 cnheiborlem 24887 cnheibor 24888 cnllycmp 24889 evth 24892 reparphti 24930 reparphtiOLD 24931 cncmet 25256 resscdrg 25292 mbfimaopn2 25592 ellimc2 25812 limcnlp 25813 limcflflem 25815 limcflf 25816 limccnp 25826 limciun 25829 dvbss 25836 perfdvf 25838 dvreslem 25844 dvres2lem 25845 dvidlem 25850 dvcnp2 25855 dvcnp2OLD 25856 dvnres 25867 dvaddbr 25874 dvmulbr 25875 dvmulbrOLD 25876 dvrec 25893 dvmptres 25901 dveflem 25917 dvlipcn 25933 dvcnvrelem2 25957 dvply1 26225 ulmdvlem3 26345 psercn 26370 abelth 26385 dvlog 26594 dvlog2 26596 efopnlem2 26600 efopn 26601 efrlim 26913 efrlimOLD 26914 lgamucov 26982 lgamucov2 26983 nmcnc 30676 raddcn 33913 lmlim 33931 cvxpconn 35223 cvxsconn 35224 cnllysconn 35226 ivthALT 36317 knoppcnlem10 36484 broucube 37642 binomcxplemdvbinom 44336 binomcxplemnotnn0 44339 climreeq 45605 limcrecl 45621 islpcn 45631 limcresiooub 45634 limcresioolb 45635 lptioo2cn 45637 lptioo1cn 45638 limclner 45643 fsumcncf 45870 ioccncflimc 45877 cncfuni 45878 icocncflimc 45881 cncfiooicclem1 45885 cncfiooicc 45886 itgsubsticclem 45967 dirkercncflem2 46096 dirkercncflem4 46098 dirkercncf 46099 fourierdlem32 46131 fourierdlem33 46132 fourierdlem48 46146 fourierdlem49 46147 fourierdlem62 46160 fourierdlem93 46191 fourierdlem101 46199 fourierdlem113 46211 fouriercnp 46218 fouriersw 46223 |
| Copyright terms: Public domain | W3C validator |