| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lmlim | Structured version Visualization version GIF version | ||
| Description: Relate a limit in a given topology to a complex number limit, provided that topology agrees with the common topology on ℂ on the required subset. (Contributed by Thierry Arnoux, 11-Jul-2017.) |
| Ref | Expression |
|---|---|
| lmlim.j | ⊢ 𝐽 ∈ (TopOn‘𝑌) |
| lmlim.f | ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) |
| lmlim.p | ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
| lmlim.t | ⊢ (𝐽 ↾t 𝑋) = ((TopOpen‘ℂfld) ↾t 𝑋) |
| lmlim.x | ⊢ 𝑋 ⊆ ℂ |
| Ref | Expression |
|---|---|
| lmlim | ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹 ⇝ 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (𝐽 ↾t 𝑋) = (𝐽 ↾t 𝑋) | |
| 2 | nnuz 12775 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 3 | cnex 11087 | . . . . 5 ⊢ ℂ ∈ V | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → ℂ ∈ V) |
| 5 | lmlim.x | . . . . 5 ⊢ 𝑋 ⊆ ℂ | |
| 6 | 5 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
| 7 | 4, 6 | ssexd 5262 | . . 3 ⊢ (𝜑 → 𝑋 ∈ V) |
| 8 | lmlim.j | . . . . 5 ⊢ 𝐽 ∈ (TopOn‘𝑌) | |
| 9 | 8 | topontopi 22831 | . . . 4 ⊢ 𝐽 ∈ Top |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 11 | lmlim.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ 𝑋) | |
| 12 | 1z 12502 | . . . 4 ⊢ 1 ∈ ℤ | |
| 13 | 12 | a1i 11 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) |
| 14 | lmlim.f | . . 3 ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) | |
| 15 | 1, 2, 7, 10, 11, 13, 14 | lmss 23214 | . 2 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹(⇝𝑡‘(𝐽 ↾t 𝑋))𝑃)) |
| 16 | lmlim.t | . . . . 5 ⊢ (𝐽 ↾t 𝑋) = ((TopOpen‘ℂfld) ↾t 𝑋) | |
| 17 | 16 | fveq2i 6825 | . . . 4 ⊢ (⇝𝑡‘(𝐽 ↾t 𝑋)) = (⇝𝑡‘((TopOpen‘ℂfld) ↾t 𝑋)) |
| 18 | 17 | breqi 5097 | . . 3 ⊢ (𝐹(⇝𝑡‘(𝐽 ↾t 𝑋))𝑃 ↔ 𝐹(⇝𝑡‘((TopOpen‘ℂfld) ↾t 𝑋))𝑃) |
| 19 | 18 | a1i 11 | . 2 ⊢ (𝜑 → (𝐹(⇝𝑡‘(𝐽 ↾t 𝑋))𝑃 ↔ 𝐹(⇝𝑡‘((TopOpen‘ℂfld) ↾t 𝑋))𝑃)) |
| 20 | eqid 2731 | . . . 4 ⊢ ((TopOpen‘ℂfld) ↾t 𝑋) = ((TopOpen‘ℂfld) ↾t 𝑋) | |
| 21 | eqid 2731 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 22 | 21 | cnfldtop 24699 | . . . . 5 ⊢ (TopOpen‘ℂfld) ∈ Top |
| 23 | 22 | a1i 11 | . . . 4 ⊢ (𝜑 → (TopOpen‘ℂfld) ∈ Top) |
| 24 | 20, 2, 7, 23, 11, 13, 14 | lmss 23214 | . . 3 ⊢ (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝑃 ↔ 𝐹(⇝𝑡‘((TopOpen‘ℂfld) ↾t 𝑋))𝑃)) |
| 25 | fss 6667 | . . . . 5 ⊢ ((𝐹:ℕ⟶𝑋 ∧ 𝑋 ⊆ ℂ) → 𝐹:ℕ⟶ℂ) | |
| 26 | 14, 5, 25 | sylancl 586 | . . . 4 ⊢ (𝜑 → 𝐹:ℕ⟶ℂ) |
| 27 | 21, 2 | lmclimf 25232 | . . . 4 ⊢ ((1 ∈ ℤ ∧ 𝐹:ℕ⟶ℂ) → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝑃 ↔ 𝐹 ⇝ 𝑃)) |
| 28 | 12, 26, 27 | sylancr 587 | . . 3 ⊢ (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝑃 ↔ 𝐹 ⇝ 𝑃)) |
| 29 | 24, 28 | bitr3d 281 | . 2 ⊢ (𝜑 → (𝐹(⇝𝑡‘((TopOpen‘ℂfld) ↾t 𝑋))𝑃 ↔ 𝐹 ⇝ 𝑃)) |
| 30 | 15, 19, 29 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹 ⇝ 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 class class class wbr 5091 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 1c1 11007 ℕcn 12125 ℤcz 12468 ⇝ cli 15391 ↾t crest 17324 TopOpenctopn 17325 ℂfldccnfld 21292 Topctop 22809 TopOnctopon 22826 ⇝𝑡clm 23142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fi 9295 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-fz 13408 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-rest 17326 df-topn 17327 df-topgen 17347 df-psmet 21284 df-xmet 21285 df-met 21286 df-bl 21287 df-mopn 21288 df-cnfld 21293 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-lm 23145 df-xms 24236 df-ms 24237 |
| This theorem is referenced by: lmlimxrge0 33959 |
| Copyright terms: Public domain | W3C validator |