Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmlim Structured version   Visualization version   GIF version

Theorem lmlim 31250
Description: Relate a limit in a given topology to a complex number limit, provided that topology agrees with the common topology on on the required subset. (Contributed by Thierry Arnoux, 11-Jul-2017.)
Hypotheses
Ref Expression
lmlim.j 𝐽 ∈ (TopOn‘𝑌)
lmlim.f (𝜑𝐹:ℕ⟶𝑋)
lmlim.p (𝜑𝑃𝑋)
lmlim.t (𝐽t 𝑋) = ((TopOpen‘ℂfld) ↾t 𝑋)
lmlim.x 𝑋 ⊆ ℂ
Assertion
Ref Expression
lmlim (𝜑 → (𝐹(⇝𝑡𝐽)𝑃𝐹𝑃))

Proof of Theorem lmlim
StepHypRef Expression
1 eqid 2824 . . 3 (𝐽t 𝑋) = (𝐽t 𝑋)
2 nnuz 12278 . . 3 ℕ = (ℤ‘1)
3 cnex 10616 . . . . 5 ℂ ∈ V
43a1i 11 . . . 4 (𝜑 → ℂ ∈ V)
5 lmlim.x . . . . 5 𝑋 ⊆ ℂ
65a1i 11 . . . 4 (𝜑𝑋 ⊆ ℂ)
74, 6ssexd 5214 . . 3 (𝜑𝑋 ∈ V)
8 lmlim.j . . . . 5 𝐽 ∈ (TopOn‘𝑌)
98topontopi 21526 . . . 4 𝐽 ∈ Top
109a1i 11 . . 3 (𝜑𝐽 ∈ Top)
11 lmlim.p . . 3 (𝜑𝑃𝑋)
12 1z 12009 . . . 4 1 ∈ ℤ
1312a1i 11 . . 3 (𝜑 → 1 ∈ ℤ)
14 lmlim.f . . 3 (𝜑𝐹:ℕ⟶𝑋)
151, 2, 7, 10, 11, 13, 14lmss 21909 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃𝐹(⇝𝑡‘(𝐽t 𝑋))𝑃))
16 lmlim.t . . . . 5 (𝐽t 𝑋) = ((TopOpen‘ℂfld) ↾t 𝑋)
1716fveq2i 6664 . . . 4 (⇝𝑡‘(𝐽t 𝑋)) = (⇝𝑡‘((TopOpen‘ℂfld) ↾t 𝑋))
1817breqi 5058 . . 3 (𝐹(⇝𝑡‘(𝐽t 𝑋))𝑃𝐹(⇝𝑡‘((TopOpen‘ℂfld) ↾t 𝑋))𝑃)
1918a1i 11 . 2 (𝜑 → (𝐹(⇝𝑡‘(𝐽t 𝑋))𝑃𝐹(⇝𝑡‘((TopOpen‘ℂfld) ↾t 𝑋))𝑃))
20 eqid 2824 . . . 4 ((TopOpen‘ℂfld) ↾t 𝑋) = ((TopOpen‘ℂfld) ↾t 𝑋)
21 eqid 2824 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2221cnfldtop 23395 . . . . 5 (TopOpen‘ℂfld) ∈ Top
2322a1i 11 . . . 4 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
2420, 2, 7, 23, 11, 13, 14lmss 21909 . . 3 (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝑃𝐹(⇝𝑡‘((TopOpen‘ℂfld) ↾t 𝑋))𝑃))
25 fss 6517 . . . . 5 ((𝐹:ℕ⟶𝑋𝑋 ⊆ ℂ) → 𝐹:ℕ⟶ℂ)
2614, 5, 25sylancl 589 . . . 4 (𝜑𝐹:ℕ⟶ℂ)
2721, 2lmclimf 23914 . . . 4 ((1 ∈ ℤ ∧ 𝐹:ℕ⟶ℂ) → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝑃𝐹𝑃))
2812, 26, 27sylancr 590 . . 3 (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝑃𝐹𝑃))
2924, 28bitr3d 284 . 2 (𝜑 → (𝐹(⇝𝑡‘((TopOpen‘ℂfld) ↾t 𝑋))𝑃𝐹𝑃))
3015, 19, 293bitrd 308 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃𝐹𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2115  Vcvv 3480  wss 3919   class class class wbr 5052  wf 6339  cfv 6343  (class class class)co 7149  cc 10533  1c1 10536  cn 11634  cz 11978  cli 14841  t crest 16694  TopOpenctopn 16695  fldccnfld 20098  Topctop 21504  TopOnctopon 21521  𝑡clm 21837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-map 8404  df-pm 8405  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-fi 8872  df-sup 8903  df-inf 8904  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-dec 12096  df-uz 12241  df-q 12346  df-rp 12387  df-xneg 12504  df-xadd 12505  df-xmul 12506  df-fz 12895  df-seq 13374  df-exp 13435  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-plusg 16578  df-mulr 16579  df-starv 16580  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-rest 16696  df-topn 16697  df-topgen 16717  df-psmet 20090  df-xmet 20091  df-met 20092  df-bl 20093  df-mopn 20094  df-cnfld 20099  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-lm 21840  df-xms 22933  df-ms 22934
This theorem is referenced by:  lmlimxrge0  31251
  Copyright terms: Public domain W3C validator