Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmlim | Structured version Visualization version GIF version |
Description: Relate a limit in a given topology to a complex number limit, provided that topology agrees with the common topology on ℂ on the required subset. (Contributed by Thierry Arnoux, 11-Jul-2017.) |
Ref | Expression |
---|---|
lmlim.j | ⊢ 𝐽 ∈ (TopOn‘𝑌) |
lmlim.f | ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) |
lmlim.p | ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
lmlim.t | ⊢ (𝐽 ↾t 𝑋) = ((TopOpen‘ℂfld) ↾t 𝑋) |
lmlim.x | ⊢ 𝑋 ⊆ ℂ |
Ref | Expression |
---|---|
lmlim | ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹 ⇝ 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (𝐽 ↾t 𝑋) = (𝐽 ↾t 𝑋) | |
2 | nnuz 12609 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
3 | cnex 10940 | . . . . 5 ⊢ ℂ ∈ V | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → ℂ ∈ V) |
5 | lmlim.x | . . . . 5 ⊢ 𝑋 ⊆ ℂ | |
6 | 5 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
7 | 4, 6 | ssexd 5247 | . . 3 ⊢ (𝜑 → 𝑋 ∈ V) |
8 | lmlim.j | . . . . 5 ⊢ 𝐽 ∈ (TopOn‘𝑌) | |
9 | 8 | topontopi 22052 | . . . 4 ⊢ 𝐽 ∈ Top |
10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) |
11 | lmlim.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ 𝑋) | |
12 | 1z 12338 | . . . 4 ⊢ 1 ∈ ℤ | |
13 | 12 | a1i 11 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) |
14 | lmlim.f | . . 3 ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) | |
15 | 1, 2, 7, 10, 11, 13, 14 | lmss 22437 | . 2 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹(⇝𝑡‘(𝐽 ↾t 𝑋))𝑃)) |
16 | lmlim.t | . . . . 5 ⊢ (𝐽 ↾t 𝑋) = ((TopOpen‘ℂfld) ↾t 𝑋) | |
17 | 16 | fveq2i 6770 | . . . 4 ⊢ (⇝𝑡‘(𝐽 ↾t 𝑋)) = (⇝𝑡‘((TopOpen‘ℂfld) ↾t 𝑋)) |
18 | 17 | breqi 5080 | . . 3 ⊢ (𝐹(⇝𝑡‘(𝐽 ↾t 𝑋))𝑃 ↔ 𝐹(⇝𝑡‘((TopOpen‘ℂfld) ↾t 𝑋))𝑃) |
19 | 18 | a1i 11 | . 2 ⊢ (𝜑 → (𝐹(⇝𝑡‘(𝐽 ↾t 𝑋))𝑃 ↔ 𝐹(⇝𝑡‘((TopOpen‘ℂfld) ↾t 𝑋))𝑃)) |
20 | eqid 2738 | . . . 4 ⊢ ((TopOpen‘ℂfld) ↾t 𝑋) = ((TopOpen‘ℂfld) ↾t 𝑋) | |
21 | eqid 2738 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
22 | 21 | cnfldtop 23935 | . . . . 5 ⊢ (TopOpen‘ℂfld) ∈ Top |
23 | 22 | a1i 11 | . . . 4 ⊢ (𝜑 → (TopOpen‘ℂfld) ∈ Top) |
24 | 20, 2, 7, 23, 11, 13, 14 | lmss 22437 | . . 3 ⊢ (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝑃 ↔ 𝐹(⇝𝑡‘((TopOpen‘ℂfld) ↾t 𝑋))𝑃)) |
25 | fss 6610 | . . . . 5 ⊢ ((𝐹:ℕ⟶𝑋 ∧ 𝑋 ⊆ ℂ) → 𝐹:ℕ⟶ℂ) | |
26 | 14, 5, 25 | sylancl 586 | . . . 4 ⊢ (𝜑 → 𝐹:ℕ⟶ℂ) |
27 | 21, 2 | lmclimf 24456 | . . . 4 ⊢ ((1 ∈ ℤ ∧ 𝐹:ℕ⟶ℂ) → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝑃 ↔ 𝐹 ⇝ 𝑃)) |
28 | 12, 26, 27 | sylancr 587 | . . 3 ⊢ (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝑃 ↔ 𝐹 ⇝ 𝑃)) |
29 | 24, 28 | bitr3d 280 | . 2 ⊢ (𝜑 → (𝐹(⇝𝑡‘((TopOpen‘ℂfld) ↾t 𝑋))𝑃 ↔ 𝐹 ⇝ 𝑃)) |
30 | 15, 19, 29 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹 ⇝ 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 Vcvv 3430 ⊆ wss 3887 class class class wbr 5074 ⟶wf 6423 ‘cfv 6427 (class class class)co 7268 ℂcc 10857 1c1 10860 ℕcn 11961 ℤcz 12307 ⇝ cli 15181 ↾t crest 17119 TopOpenctopn 17120 ℂfldccnfld 20585 Topctop 22030 TopOnctopon 22047 ⇝𝑡clm 22365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-cnex 10915 ax-resscn 10916 ax-1cn 10917 ax-icn 10918 ax-addcl 10919 ax-addrcl 10920 ax-mulcl 10921 ax-mulrcl 10922 ax-mulcom 10923 ax-addass 10924 ax-mulass 10925 ax-distr 10926 ax-i2m1 10927 ax-1ne0 10928 ax-1rid 10929 ax-rnegex 10930 ax-rrecex 10931 ax-cnre 10932 ax-pre-lttri 10933 ax-pre-lttrn 10934 ax-pre-ltadd 10935 ax-pre-mulgt0 10936 ax-pre-sup 10937 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-tp 4567 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7704 df-1st 7821 df-2nd 7822 df-frecs 8085 df-wrecs 8116 df-recs 8190 df-rdg 8229 df-1o 8285 df-er 8486 df-map 8605 df-pm 8606 df-en 8722 df-dom 8723 df-sdom 8724 df-fin 8725 df-fi 9158 df-sup 9189 df-inf 9190 df-pnf 10999 df-mnf 11000 df-xr 11001 df-ltxr 11002 df-le 11003 df-sub 11195 df-neg 11196 df-div 11621 df-nn 11962 df-2 12024 df-3 12025 df-4 12026 df-5 12027 df-6 12028 df-7 12029 df-8 12030 df-9 12031 df-n0 12222 df-z 12308 df-dec 12426 df-uz 12571 df-q 12677 df-rp 12719 df-xneg 12836 df-xadd 12837 df-xmul 12838 df-fz 13228 df-seq 13710 df-exp 13771 df-cj 14798 df-re 14799 df-im 14800 df-sqrt 14934 df-abs 14935 df-clim 15185 df-struct 16836 df-slot 16871 df-ndx 16883 df-base 16901 df-plusg 16963 df-mulr 16964 df-starv 16965 df-tset 16969 df-ple 16970 df-ds 16972 df-unif 16973 df-rest 17121 df-topn 17122 df-topgen 17142 df-psmet 20577 df-xmet 20578 df-met 20579 df-bl 20580 df-mopn 20581 df-cnfld 20586 df-top 22031 df-topon 22048 df-topsp 22070 df-bases 22084 df-lm 22368 df-xms 23461 df-ms 23462 |
This theorem is referenced by: lmlimxrge0 31884 |
Copyright terms: Public domain | W3C validator |