Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem10 Structured version   Visualization version   GIF version

Theorem knoppcnlem10 36490
Description: Lemma for knoppcn 36492. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) Avoid ax-mulf 11148. (Revised by GG, 19-Apr-2025.)
Hypotheses
Ref Expression
knoppcnlem10.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcnlem10.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem10.n (𝜑𝑁 ∈ ℕ)
knoppcnlem10.1 (𝜑𝐶 ∈ ℝ)
knoppcnlem10.2 (𝜑𝑀 ∈ ℕ0)
Assertion
Ref Expression
knoppcnlem10 (𝜑 → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑀)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
Distinct variable groups:   𝐶,𝑛,𝑦,𝑧   𝑛,𝑀,𝑧   𝑛,𝑁,𝑦,𝑧   𝑇,𝑛,𝑦,𝑧   𝜑,𝑛,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑇(𝑥)   𝐹(𝑥,𝑦,𝑧,𝑛)   𝑀(𝑥,𝑦)   𝑁(𝑥)

Proof of Theorem knoppcnlem10
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 knoppcnlem10.f . . . 4 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
2 simpr 484 . . . 4 ((𝜑𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
3 knoppcnlem10.2 . . . . 5 (𝜑𝑀 ∈ ℕ0)
43adantr 480 . . . 4 ((𝜑𝑧 ∈ ℝ) → 𝑀 ∈ ℕ0)
51, 2, 4knoppcnlem1 36481 . . 3 ((𝜑𝑧 ∈ ℝ) → ((𝐹𝑧)‘𝑀) = ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧))))
65mpteq2dva 5200 . 2 (𝜑 → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑀)) = (𝑧 ∈ ℝ ↦ ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧)))))
7 retopon 24651 . . . 4 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
87a1i 11 . . 3 (𝜑 → (topGen‘ran (,)) ∈ (TopOn‘ℝ))
9 eqid 2729 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
109cnfldtopon 24670 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
1110a1i 11 . . . 4 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
12 knoppcnlem10.1 . . . . . 6 (𝜑𝐶 ∈ ℝ)
1312recnd 11202 . . . . 5 (𝜑𝐶 ∈ ℂ)
1413, 3expcld 14111 . . . 4 (𝜑 → (𝐶𝑀) ∈ ℂ)
158, 11, 14cnmptc 23549 . . 3 (𝜑 → (𝑧 ∈ ℝ ↦ (𝐶𝑀)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
16 2cnd 12264 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
17 knoppcnlem10.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
1817nncnd 12202 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
1916, 18mulcld 11194 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ∈ ℂ)
2019, 3expcld 14111 . . . . . . . 8 (𝜑 → ((2 · 𝑁)↑𝑀) ∈ ℂ)
218, 11, 20cnmptc 23549 . . . . . . 7 (𝜑 → (𝑧 ∈ ℝ ↦ ((2 · 𝑁)↑𝑀)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
22 tgioo4 24693 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
2322oveq2i 7398 . . . . . . . . 9 ((topGen‘ran (,)) Cn (topGen‘ran (,))) = ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ℝ))
249cnfldtop 24671 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ Top
25 cnrest2r 23174 . . . . . . . . . 10 ((TopOpen‘ℂfld) ∈ Top → ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ℝ)) ⊆ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
2624, 25ax-mp 5 . . . . . . . . 9 ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ℝ)) ⊆ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))
2723, 26eqsstri 3993 . . . . . . . 8 ((topGen‘ran (,)) Cn (topGen‘ran (,))) ⊆ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))
288cnmptid 23548 . . . . . . . 8 (𝜑 → (𝑧 ∈ ℝ ↦ 𝑧) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))))
2927, 28sselid 3944 . . . . . . 7 (𝜑 → (𝑧 ∈ ℝ ↦ 𝑧) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
309mpomulcn 24758 . . . . . . . 8 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
3130a1i 11 . . . . . . 7 (𝜑 → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
32 oveq12 7396 . . . . . . 7 ((𝑢 = ((2 · 𝑁)↑𝑀) ∧ 𝑣 = 𝑧) → (𝑢 · 𝑣) = (((2 · 𝑁)↑𝑀) · 𝑧))
338, 21, 29, 11, 11, 31, 32cnmpt12 23554 . . . . . 6 (𝜑 → (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
34 2re 12260 . . . . . . . . . . . . . 14 2 ∈ ℝ
3534a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℝ)
3617nnred 12201 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℝ)
3735, 36remulcld 11204 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) ∈ ℝ)
3837, 3reexpcld 14128 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁)↑𝑀) ∈ ℝ)
3938adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℝ) → ((2 · 𝑁)↑𝑀) ∈ ℝ)
4039, 2remulcld 11204 . . . . . . . . 9 ((𝜑𝑧 ∈ ℝ) → (((2 · 𝑁)↑𝑀) · 𝑧) ∈ ℝ)
4140fmpttd 7087 . . . . . . . 8 (𝜑 → (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)):ℝ⟶ℝ)
4241frnd 6696 . . . . . . 7 (𝜑 → ran (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ⊆ ℝ)
43 ax-resscn 11125 . . . . . . . 8 ℝ ⊆ ℂ
4443a1i 11 . . . . . . 7 (𝜑 → ℝ ⊆ ℂ)
45 cnrest2 23173 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ⊆ ℝ ∧ ℝ ⊆ ℂ) → ((𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)) ↔ (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ℝ))))
4610, 42, 44, 45mp3an2i 1468 . . . . . 6 (𝜑 → ((𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)) ↔ (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ℝ))))
4733, 46mpbid 232 . . . . 5 (𝜑 → (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4847, 23eleqtrrdi 2839 . . . 4 (𝜑 → (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))))
49 ssid 3969 . . . . . . 7 ℂ ⊆ ℂ
50 cncfss 24792 . . . . . . 7 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ))
5143, 49, 50mp2an 692 . . . . . 6 (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ)
52 knoppcnlem10.t . . . . . . . 8 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
5352dnicn 36480 . . . . . . 7 𝑇 ∈ (ℝ–cn→ℝ)
5453a1i 11 . . . . . 6 (𝜑𝑇 ∈ (ℝ–cn→ℝ))
5551, 54sselid 3944 . . . . 5 (𝜑𝑇 ∈ (ℝ–cn→ℂ))
5610toponrestid 22808 . . . . . . 7 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
579, 22, 56cncfcn 24803 . . . . . 6 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℂ) = ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
5843, 49, 57mp2an 692 . . . . 5 (ℝ–cn→ℂ) = ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))
5955, 58eleqtrdi 2838 . . . 4 (𝜑𝑇 ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
608, 48, 59cnmpt11f 23551 . . 3 (𝜑 → (𝑧 ∈ ℝ ↦ (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧))) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
61 oveq12 7396 . . 3 ((𝑢 = (𝐶𝑀) ∧ 𝑣 = (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧))) → (𝑢 · 𝑣) = ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧))))
628, 15, 60, 11, 11, 31, 61cnmpt12 23554 . 2 (𝜑 → (𝑧 ∈ ℝ ↦ ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧)))) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
636, 62eqeltrd 2828 1 (𝜑 → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑀)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3914  cmpt 5188  ran crn 5639  cfv 6511  (class class class)co 7387  cmpo 7389  cc 11066  cr 11067  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  0cn0 12442  (,)cioo 13306  cfl 13752  cexp 14026  abscabs 15200  t crest 17383  TopOpenctopn 17384  topGenctg 17400  fldccnfld 21264  Topctop 22780  TopOnctopon 22797   Cn ccn 23111   ×t ctx 23447  cnccncf 24769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cn 23114  df-cnp 23115  df-tx 23449  df-hmeo 23642  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771
This theorem is referenced by:  knoppcnlem11  36491
  Copyright terms: Public domain W3C validator