Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem10 Structured version   Visualization version   GIF version

Theorem knoppcnlem10 34376
Description: Lemma for knoppcn 34378. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppcnlem10.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcnlem10.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem10.n (𝜑𝑁 ∈ ℕ)
knoppcnlem10.1 (𝜑𝐶 ∈ ℝ)
knoppcnlem10.2 (𝜑𝑀 ∈ ℕ0)
Assertion
Ref Expression
knoppcnlem10 (𝜑 → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑀)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
Distinct variable groups:   𝐶,𝑛,𝑦,𝑧   𝑛,𝑀,𝑧   𝑛,𝑁,𝑦,𝑧   𝑇,𝑛,𝑦,𝑧   𝜑,𝑛,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑇(𝑥)   𝐹(𝑥,𝑦,𝑧,𝑛)   𝑀(𝑥,𝑦)   𝑁(𝑥)

Proof of Theorem knoppcnlem10
StepHypRef Expression
1 knoppcnlem10.f . . . 4 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
2 simpr 488 . . . 4 ((𝜑𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
3 knoppcnlem10.2 . . . . 5 (𝜑𝑀 ∈ ℕ0)
43adantr 484 . . . 4 ((𝜑𝑧 ∈ ℝ) → 𝑀 ∈ ℕ0)
51, 2, 4knoppcnlem1 34367 . . 3 ((𝜑𝑧 ∈ ℝ) → ((𝐹𝑧)‘𝑀) = ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧))))
65mpteq2dva 5139 . 2 (𝜑 → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑀)) = (𝑧 ∈ ℝ ↦ ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧)))))
7 retopon 23633 . . . 4 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
87a1i 11 . . 3 (𝜑 → (topGen‘ran (,)) ∈ (TopOn‘ℝ))
9 eqid 2734 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
109cnfldtopon 23652 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
1110a1i 11 . . . 4 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
12 knoppcnlem10.1 . . . . . 6 (𝜑𝐶 ∈ ℝ)
1312recnd 10844 . . . . 5 (𝜑𝐶 ∈ ℂ)
1413, 3expcld 13699 . . . 4 (𝜑 → (𝐶𝑀) ∈ ℂ)
158, 11, 14cnmptc 22531 . . 3 (𝜑 → (𝑧 ∈ ℝ ↦ (𝐶𝑀)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
16 2re 11887 . . . . . . . . . . . 12 2 ∈ ℝ
1716a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
18 knoppcnlem10.n . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
19 nnre 11820 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2018, 19syl 17 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
2117, 20remulcld 10846 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℝ)
2221, 3reexpcld 13716 . . . . . . . . 9 (𝜑 → ((2 · 𝑁)↑𝑀) ∈ ℝ)
2322recnd 10844 . . . . . . . 8 (𝜑 → ((2 · 𝑁)↑𝑀) ∈ ℂ)
248, 11, 23cnmptc 22531 . . . . . . 7 (𝜑 → (𝑧 ∈ ℝ ↦ ((2 · 𝑁)↑𝑀)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
259tgioo2 23672 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
2625oveq2i 7213 . . . . . . . . 9 ((topGen‘ran (,)) Cn (topGen‘ran (,))) = ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ℝ))
2710topontopi 21784 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ Top
28 cnrest2r 22156 . . . . . . . . . 10 ((TopOpen‘ℂfld) ∈ Top → ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ℝ)) ⊆ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
2927, 28ax-mp 5 . . . . . . . . 9 ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ℝ)) ⊆ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))
3026, 29eqsstri 3925 . . . . . . . 8 ((topGen‘ran (,)) Cn (topGen‘ran (,))) ⊆ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))
318cnmptid 22530 . . . . . . . 8 (𝜑 → (𝑧 ∈ ℝ ↦ 𝑧) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))))
3230, 31sseldi 3889 . . . . . . 7 (𝜑 → (𝑧 ∈ ℝ ↦ 𝑧) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
339mulcn 23736 . . . . . . . 8 · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
3433a1i 11 . . . . . . 7 (𝜑 → · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
358, 24, 32, 34cnmpt12f 22535 . . . . . 6 (𝜑 → (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
3622adantr 484 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℝ) → ((2 · 𝑁)↑𝑀) ∈ ℝ)
3736, 2remulcld 10846 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℝ) → (((2 · 𝑁)↑𝑀) · 𝑧) ∈ ℝ)
3837fmpttd 6921 . . . . . . . . 9 (𝜑 → (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)):ℝ⟶ℝ)
3938frnd 6542 . . . . . . . 8 (𝜑 → ran (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ⊆ ℝ)
40 ax-resscn 10769 . . . . . . . . 9 ℝ ⊆ ℂ
4140a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℂ)
4211, 39, 413jca 1130 . . . . . . 7 (𝜑 → ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ⊆ ℝ ∧ ℝ ⊆ ℂ))
43 cnrest2 22155 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ⊆ ℝ ∧ ℝ ⊆ ℂ) → ((𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)) ↔ (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ℝ))))
4442, 43syl 17 . . . . . 6 (𝜑 → ((𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)) ↔ (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ℝ))))
4535, 44mpbid 235 . . . . 5 (𝜑 → (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4645, 26eleqtrrdi 2845 . . . 4 (𝜑 → (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))))
47 ssid 3913 . . . . . . . 8 ℂ ⊆ ℂ
4840, 47pm3.2i 474 . . . . . . 7 (ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ)
49 cncfss 23768 . . . . . . 7 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ))
5048, 49ax-mp 5 . . . . . 6 (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ)
51 knoppcnlem10.t . . . . . . . 8 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
5251dnicn 34366 . . . . . . 7 𝑇 ∈ (ℝ–cn→ℝ)
5352a1i 11 . . . . . 6 (𝜑𝑇 ∈ (ℝ–cn→ℝ))
5450, 53sseldi 3889 . . . . 5 (𝜑𝑇 ∈ (ℝ–cn→ℂ))
5510toponrestid 21790 . . . . . . 7 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
569, 25, 55cncfcn 23779 . . . . . 6 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℂ) = ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
5748, 56ax-mp 5 . . . . 5 (ℝ–cn→ℂ) = ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))
5854, 57eleqtrdi 2844 . . . 4 (𝜑𝑇 ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
598, 46, 58cnmpt11f 22533 . . 3 (𝜑 → (𝑧 ∈ ℝ ↦ (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧))) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
608, 15, 59, 34cnmpt12f 22535 . 2 (𝜑 → (𝑧 ∈ ℝ ↦ ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧)))) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
616, 60eqeltrd 2834 1 (𝜑 → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑀)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wss 3857  cmpt 5124  ran crn 5541  cfv 6369  (class class class)co 7202  cc 10710  cr 10711  1c1 10713   + caddc 10715   · cmul 10717  cmin 11045   / cdiv 11472  cn 11813  2c2 11868  0cn0 12073  (,)cioo 12918  cfl 13348  cexp 13618  abscabs 14780  t crest 16897  TopOpenctopn 16898  topGenctg 16914  fldccnfld 20335  Topctop 21762  TopOnctopon 21779   Cn ccn 22093   ×t ctx 22429  cnccncf 23745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790  ax-mulf 10792
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-iin 4897  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-of 7458  df-om 7634  df-1st 7750  df-2nd 7751  df-supp 7893  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-2o 8192  df-er 8380  df-map 8499  df-ixp 8568  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-fsupp 8975  df-fi 9016  df-sup 9047  df-inf 9048  df-oi 9115  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-9 11883  df-n0 12074  df-z 12160  df-dec 12277  df-uz 12422  df-q 12528  df-rp 12570  df-xneg 12687  df-xadd 12688  df-xmul 12689  df-ioo 12922  df-icc 12925  df-fz 13079  df-fzo 13222  df-fl 13350  df-seq 13558  df-exp 13619  df-hash 13880  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-mulr 16781  df-starv 16782  df-sca 16783  df-vsca 16784  df-ip 16785  df-tset 16786  df-ple 16787  df-ds 16789  df-unif 16790  df-hom 16791  df-cco 16792  df-rest 16899  df-topn 16900  df-0g 16918  df-gsum 16919  df-topgen 16920  df-pt 16921  df-prds 16924  df-xrs 16979  df-qtop 16984  df-imas 16985  df-xps 16987  df-mre 17061  df-mrc 17062  df-acs 17064  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-submnd 18191  df-mulg 18461  df-cntz 18683  df-cmn 19144  df-psmet 20327  df-xmet 20328  df-met 20329  df-bl 20330  df-mopn 20331  df-cnfld 20336  df-top 21763  df-topon 21780  df-topsp 21802  df-bases 21815  df-cn 22096  df-cnp 22097  df-tx 22431  df-hmeo 22624  df-xms 23190  df-ms 23191  df-tms 23192  df-cncf 23747
This theorem is referenced by:  knoppcnlem11  34377
  Copyright terms: Public domain W3C validator