Step | Hyp | Ref
| Expression |
1 | | knoppcnlem10.f |
. . . 4
β’ πΉ = (π¦ β β β¦ (π β β0 β¦ ((πΆβπ) Β· (πβ(((2 Β· π)βπ) Β· π¦))))) |
2 | | simpr 485 |
. . . 4
β’ ((π β§ π§ β β) β π§ β β) |
3 | | knoppcnlem10.2 |
. . . . 5
β’ (π β π β
β0) |
4 | 3 | adantr 481 |
. . . 4
β’ ((π β§ π§ β β) β π β
β0) |
5 | 1, 2, 4 | knoppcnlem1 35364 |
. . 3
β’ ((π β§ π§ β β) β ((πΉβπ§)βπ) = ((πΆβπ) Β· (πβ(((2 Β· π)βπ) Β· π§)))) |
6 | 5 | mpteq2dva 5248 |
. 2
β’ (π β (π§ β β β¦ ((πΉβπ§)βπ)) = (π§ β β β¦ ((πΆβπ) Β· (πβ(((2 Β· π)βπ) Β· π§))))) |
7 | | retopon 24279 |
. . . 4
β’
(topGenβran (,)) β (TopOnββ) |
8 | 7 | a1i 11 |
. . 3
β’ (π β (topGenβran (,))
β (TopOnββ)) |
9 | | eqid 2732 |
. . . . . 6
β’
(TopOpenββfld) =
(TopOpenββfld) |
10 | 9 | cnfldtopon 24298 |
. . . . 5
β’
(TopOpenββfld) β
(TopOnββ) |
11 | 10 | a1i 11 |
. . . 4
β’ (π β
(TopOpenββfld) β
(TopOnββ)) |
12 | | knoppcnlem10.1 |
. . . . . 6
β’ (π β πΆ β β) |
13 | 12 | recnd 11241 |
. . . . 5
β’ (π β πΆ β β) |
14 | 13, 3 | expcld 14110 |
. . . 4
β’ (π β (πΆβπ) β β) |
15 | 8, 11, 14 | cnmptc 23165 |
. . 3
β’ (π β (π§ β β β¦ (πΆβπ)) β ((topGenβran (,)) Cn
(TopOpenββfld))) |
16 | | 2re 12285 |
. . . . . . . . . . . 12
β’ 2 β
β |
17 | 16 | a1i 11 |
. . . . . . . . . . 11
β’ (π β 2 β
β) |
18 | | knoppcnlem10.n |
. . . . . . . . . . . 12
β’ (π β π β β) |
19 | | nnre 12218 |
. . . . . . . . . . . 12
β’ (π β β β π β
β) |
20 | 18, 19 | syl 17 |
. . . . . . . . . . 11
β’ (π β π β β) |
21 | 17, 20 | remulcld 11243 |
. . . . . . . . . 10
β’ (π β (2 Β· π) β
β) |
22 | 21, 3 | reexpcld 14127 |
. . . . . . . . 9
β’ (π β ((2 Β· π)βπ) β β) |
23 | 22 | recnd 11241 |
. . . . . . . 8
β’ (π β ((2 Β· π)βπ) β β) |
24 | 8, 11, 23 | cnmptc 23165 |
. . . . . . 7
β’ (π β (π§ β β β¦ ((2 Β· π)βπ)) β ((topGenβran (,)) Cn
(TopOpenββfld))) |
25 | 9 | tgioo2 24318 |
. . . . . . . . . 10
β’
(topGenβran (,)) = ((TopOpenββfld)
βΎt β) |
26 | 25 | oveq2i 7419 |
. . . . . . . . 9
β’
((topGenβran (,)) Cn (topGenβran (,))) = ((topGenβran
(,)) Cn ((TopOpenββfld) βΎt
β)) |
27 | 10 | topontopi 22416 |
. . . . . . . . . 10
β’
(TopOpenββfld) β Top |
28 | | cnrest2r 22790 |
. . . . . . . . . 10
β’
((TopOpenββfld) β Top β
((topGenβran (,)) Cn ((TopOpenββfld)
βΎt β)) β ((topGenβran (,)) Cn
(TopOpenββfld))) |
29 | 27, 28 | ax-mp 5 |
. . . . . . . . 9
β’
((topGenβran (,)) Cn ((TopOpenββfld)
βΎt β)) β ((topGenβran (,)) Cn
(TopOpenββfld)) |
30 | 26, 29 | eqsstri 4016 |
. . . . . . . 8
β’
((topGenβran (,)) Cn (topGenβran (,))) β
((topGenβran (,)) Cn
(TopOpenββfld)) |
31 | 8 | cnmptid 23164 |
. . . . . . . 8
β’ (π β (π§ β β β¦ π§) β ((topGenβran (,)) Cn
(topGenβran (,)))) |
32 | 30, 31 | sselid 3980 |
. . . . . . 7
β’ (π β (π§ β β β¦ π§) β ((topGenβran (,)) Cn
(TopOpenββfld))) |
33 | 9 | mulcn 24382 |
. . . . . . . 8
β’ Β·
β (((TopOpenββfld) Γt
(TopOpenββfld)) Cn
(TopOpenββfld)) |
34 | 33 | a1i 11 |
. . . . . . 7
β’ (π β Β· β
(((TopOpenββfld) Γt
(TopOpenββfld)) Cn
(TopOpenββfld))) |
35 | 8, 24, 32, 34 | cnmpt12f 23169 |
. . . . . 6
β’ (π β (π§ β β β¦ (((2 Β· π)βπ) Β· π§)) β ((topGenβran (,)) Cn
(TopOpenββfld))) |
36 | 22 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β§ π§ β β) β ((2 Β· π)βπ) β β) |
37 | 36, 2 | remulcld 11243 |
. . . . . . . . . 10
β’ ((π β§ π§ β β) β (((2 Β· π)βπ) Β· π§) β β) |
38 | 37 | fmpttd 7114 |
. . . . . . . . 9
β’ (π β (π§ β β β¦ (((2 Β· π)βπ) Β· π§)):ββΆβ) |
39 | 38 | frnd 6725 |
. . . . . . . 8
β’ (π β ran (π§ β β β¦ (((2 Β· π)βπ) Β· π§)) β β) |
40 | | ax-resscn 11166 |
. . . . . . . . 9
β’ β
β β |
41 | 40 | a1i 11 |
. . . . . . . 8
β’ (π β β β
β) |
42 | 11, 39, 41 | 3jca 1128 |
. . . . . . 7
β’ (π β
((TopOpenββfld) β (TopOnββ) β§ ran
(π§ β β β¦
(((2 Β· π)βπ) Β· π§)) β β β§ β β
β)) |
43 | | cnrest2 22789 |
. . . . . . 7
β’
(((TopOpenββfld) β (TopOnββ)
β§ ran (π§ β β
β¦ (((2 Β· π)βπ) Β· π§)) β β β§ β β
β) β ((π§ β
β β¦ (((2 Β· π)βπ) Β· π§)) β ((topGenβran (,)) Cn
(TopOpenββfld)) β (π§ β β β¦ (((2 Β· π)βπ) Β· π§)) β ((topGenβran (,)) Cn
((TopOpenββfld) βΎt
β)))) |
44 | 42, 43 | syl 17 |
. . . . . 6
β’ (π β ((π§ β β β¦ (((2 Β· π)βπ) Β· π§)) β ((topGenβran (,)) Cn
(TopOpenββfld)) β (π§ β β β¦ (((2 Β· π)βπ) Β· π§)) β ((topGenβran (,)) Cn
((TopOpenββfld) βΎt
β)))) |
45 | 35, 44 | mpbid 231 |
. . . . 5
β’ (π β (π§ β β β¦ (((2 Β· π)βπ) Β· π§)) β ((topGenβran (,)) Cn
((TopOpenββfld) βΎt
β))) |
46 | 45, 26 | eleqtrrdi 2844 |
. . . 4
β’ (π β (π§ β β β¦ (((2 Β· π)βπ) Β· π§)) β ((topGenβran (,)) Cn
(topGenβran (,)))) |
47 | | ssid 4004 |
. . . . . . . 8
β’ β
β β |
48 | 40, 47 | pm3.2i 471 |
. . . . . . 7
β’ (β
β β β§ β β β) |
49 | | cncfss 24414 |
. . . . . . 7
β’ ((β
β β β§ β β β) β (ββcnββ) β (ββcnββ)) |
50 | 48, 49 | ax-mp 5 |
. . . . . 6
β’
(ββcnββ)
β (ββcnββ) |
51 | | knoppcnlem10.t |
. . . . . . . 8
β’ π = (π₯ β β β¦
(absβ((ββ(π₯ + (1 / 2))) β π₯))) |
52 | 51 | dnicn 35363 |
. . . . . . 7
β’ π β (ββcnββ) |
53 | 52 | a1i 11 |
. . . . . 6
β’ (π β π β (ββcnββ)) |
54 | 50, 53 | sselid 3980 |
. . . . 5
β’ (π β π β (ββcnββ)) |
55 | 10 | toponrestid 22422 |
. . . . . . 7
β’
(TopOpenββfld) =
((TopOpenββfld) βΎt
β) |
56 | 9, 25, 55 | cncfcn 24425 |
. . . . . 6
β’ ((β
β β β§ β β β) β (ββcnββ) = ((topGenβran (,)) Cn
(TopOpenββfld))) |
57 | 48, 56 | ax-mp 5 |
. . . . 5
β’
(ββcnββ) =
((topGenβran (,)) Cn
(TopOpenββfld)) |
58 | 54, 57 | eleqtrdi 2843 |
. . . 4
β’ (π β π β ((topGenβran (,)) Cn
(TopOpenββfld))) |
59 | 8, 46, 58 | cnmpt11f 23167 |
. . 3
β’ (π β (π§ β β β¦ (πβ(((2 Β· π)βπ) Β· π§))) β ((topGenβran (,)) Cn
(TopOpenββfld))) |
60 | 8, 15, 59, 34 | cnmpt12f 23169 |
. 2
β’ (π β (π§ β β β¦ ((πΆβπ) Β· (πβ(((2 Β· π)βπ) Β· π§)))) β ((topGenβran (,)) Cn
(TopOpenββfld))) |
61 | 6, 60 | eqeltrd 2833 |
1
β’ (π β (π§ β β β¦ ((πΉβπ§)βπ)) β ((topGenβran (,)) Cn
(TopOpenββfld))) |