Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem10 Structured version   Visualization version   GIF version

Theorem knoppcnlem10 36478
Description: Lemma for knoppcn 36480. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) Avoid ax-mulf 11108. (Revised by GG, 19-Apr-2025.)
Hypotheses
Ref Expression
knoppcnlem10.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcnlem10.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem10.n (𝜑𝑁 ∈ ℕ)
knoppcnlem10.1 (𝜑𝐶 ∈ ℝ)
knoppcnlem10.2 (𝜑𝑀 ∈ ℕ0)
Assertion
Ref Expression
knoppcnlem10 (𝜑 → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑀)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
Distinct variable groups:   𝐶,𝑛,𝑦,𝑧   𝑛,𝑀,𝑧   𝑛,𝑁,𝑦,𝑧   𝑇,𝑛,𝑦,𝑧   𝜑,𝑛,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑇(𝑥)   𝐹(𝑥,𝑦,𝑧,𝑛)   𝑀(𝑥,𝑦)   𝑁(𝑥)

Proof of Theorem knoppcnlem10
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 knoppcnlem10.f . . . 4 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
2 simpr 484 . . . 4 ((𝜑𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
3 knoppcnlem10.2 . . . . 5 (𝜑𝑀 ∈ ℕ0)
43adantr 480 . . . 4 ((𝜑𝑧 ∈ ℝ) → 𝑀 ∈ ℕ0)
51, 2, 4knoppcnlem1 36469 . . 3 ((𝜑𝑧 ∈ ℝ) → ((𝐹𝑧)‘𝑀) = ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧))))
65mpteq2dva 5188 . 2 (𝜑 → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑀)) = (𝑧 ∈ ℝ ↦ ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧)))))
7 retopon 24667 . . . 4 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
87a1i 11 . . 3 (𝜑 → (topGen‘ran (,)) ∈ (TopOn‘ℝ))
9 eqid 2729 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
109cnfldtopon 24686 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
1110a1i 11 . . . 4 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
12 knoppcnlem10.1 . . . . . 6 (𝜑𝐶 ∈ ℝ)
1312recnd 11162 . . . . 5 (𝜑𝐶 ∈ ℂ)
1413, 3expcld 14071 . . . 4 (𝜑 → (𝐶𝑀) ∈ ℂ)
158, 11, 14cnmptc 23565 . . 3 (𝜑 → (𝑧 ∈ ℝ ↦ (𝐶𝑀)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
16 2cnd 12224 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
17 knoppcnlem10.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
1817nncnd 12162 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
1916, 18mulcld 11154 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ∈ ℂ)
2019, 3expcld 14071 . . . . . . . 8 (𝜑 → ((2 · 𝑁)↑𝑀) ∈ ℂ)
218, 11, 20cnmptc 23565 . . . . . . 7 (𝜑 → (𝑧 ∈ ℝ ↦ ((2 · 𝑁)↑𝑀)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
22 tgioo4 24709 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
2322oveq2i 7364 . . . . . . . . 9 ((topGen‘ran (,)) Cn (topGen‘ran (,))) = ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ℝ))
249cnfldtop 24687 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ Top
25 cnrest2r 23190 . . . . . . . . . 10 ((TopOpen‘ℂfld) ∈ Top → ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ℝ)) ⊆ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
2624, 25ax-mp 5 . . . . . . . . 9 ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ℝ)) ⊆ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))
2723, 26eqsstri 3984 . . . . . . . 8 ((topGen‘ran (,)) Cn (topGen‘ran (,))) ⊆ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))
288cnmptid 23564 . . . . . . . 8 (𝜑 → (𝑧 ∈ ℝ ↦ 𝑧) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))))
2927, 28sselid 3935 . . . . . . 7 (𝜑 → (𝑧 ∈ ℝ ↦ 𝑧) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
309mpomulcn 24774 . . . . . . . 8 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
3130a1i 11 . . . . . . 7 (𝜑 → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
32 oveq12 7362 . . . . . . 7 ((𝑢 = ((2 · 𝑁)↑𝑀) ∧ 𝑣 = 𝑧) → (𝑢 · 𝑣) = (((2 · 𝑁)↑𝑀) · 𝑧))
338, 21, 29, 11, 11, 31, 32cnmpt12 23570 . . . . . 6 (𝜑 → (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
34 2re 12220 . . . . . . . . . . . . . 14 2 ∈ ℝ
3534a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℝ)
3617nnred 12161 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℝ)
3735, 36remulcld 11164 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) ∈ ℝ)
3837, 3reexpcld 14088 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁)↑𝑀) ∈ ℝ)
3938adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℝ) → ((2 · 𝑁)↑𝑀) ∈ ℝ)
4039, 2remulcld 11164 . . . . . . . . 9 ((𝜑𝑧 ∈ ℝ) → (((2 · 𝑁)↑𝑀) · 𝑧) ∈ ℝ)
4140fmpttd 7053 . . . . . . . 8 (𝜑 → (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)):ℝ⟶ℝ)
4241frnd 6664 . . . . . . 7 (𝜑 → ran (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ⊆ ℝ)
43 ax-resscn 11085 . . . . . . . 8 ℝ ⊆ ℂ
4443a1i 11 . . . . . . 7 (𝜑 → ℝ ⊆ ℂ)
45 cnrest2 23189 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ⊆ ℝ ∧ ℝ ⊆ ℂ) → ((𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)) ↔ (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ℝ))))
4610, 42, 44, 45mp3an2i 1468 . . . . . 6 (𝜑 → ((𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)) ↔ (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ℝ))))
4733, 46mpbid 232 . . . . 5 (𝜑 → (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4847, 23eleqtrrdi 2839 . . . 4 (𝜑 → (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))))
49 ssid 3960 . . . . . . 7 ℂ ⊆ ℂ
50 cncfss 24808 . . . . . . 7 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ))
5143, 49, 50mp2an 692 . . . . . 6 (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ)
52 knoppcnlem10.t . . . . . . . 8 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
5352dnicn 36468 . . . . . . 7 𝑇 ∈ (ℝ–cn→ℝ)
5453a1i 11 . . . . . 6 (𝜑𝑇 ∈ (ℝ–cn→ℝ))
5551, 54sselid 3935 . . . . 5 (𝜑𝑇 ∈ (ℝ–cn→ℂ))
5610toponrestid 22824 . . . . . . 7 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
579, 22, 56cncfcn 24819 . . . . . 6 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℂ) = ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
5843, 49, 57mp2an 692 . . . . 5 (ℝ–cn→ℂ) = ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))
5955, 58eleqtrdi 2838 . . . 4 (𝜑𝑇 ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
608, 48, 59cnmpt11f 23567 . . 3 (𝜑 → (𝑧 ∈ ℝ ↦ (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧))) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
61 oveq12 7362 . . 3 ((𝑢 = (𝐶𝑀) ∧ 𝑣 = (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧))) → (𝑢 · 𝑣) = ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧))))
628, 15, 60, 11, 11, 31, 61cnmpt12 23570 . 2 (𝜑 → (𝑧 ∈ ℝ ↦ ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧)))) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
636, 62eqeltrd 2828 1 (𝜑 → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑀)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3905  cmpt 5176  ran crn 5624  cfv 6486  (class class class)co 7353  cmpo 7355  cc 11026  cr 11027  1c1 11029   + caddc 11031   · cmul 11033  cmin 11365   / cdiv 11795  cn 12146  2c2 12201  0cn0 12402  (,)cioo 13266  cfl 13712  cexp 13986  abscabs 15159  t crest 17342  TopOpenctopn 17343  topGenctg 17359  fldccnfld 21279  Topctop 22796  TopOnctopon 22813   Cn ccn 23127   ×t ctx 23463  cnccncf 24785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cn 23130  df-cnp 23131  df-tx 23465  df-hmeo 23658  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787
This theorem is referenced by:  knoppcnlem11  36479
  Copyright terms: Public domain W3C validator