Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > trlval | Structured version Visualization version GIF version |
Description: The value of the trace of a lattice translation. (Contributed by NM, 20-May-2012.) |
Ref | Expression |
---|---|
trlset.b | ⊢ 𝐵 = (Base‘𝐾) |
trlset.l | ⊢ ≤ = (le‘𝐾) |
trlset.j | ⊢ ∨ = (join‘𝐾) |
trlset.m | ⊢ ∧ = (meet‘𝐾) |
trlset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
trlset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
trlset.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
trlset.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
trlval | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) = (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlset.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | trlset.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | trlset.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
4 | trlset.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
5 | trlset.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | trlset.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | trlset.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | trlset.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | trlset 38102 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝑅 = (𝑓 ∈ 𝑇 ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊))))) |
10 | 9 | fveq1d 6758 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑅‘𝐹) = ((𝑓 ∈ 𝑇 ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊))))‘𝐹)) |
11 | fveq1 6755 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑝) = (𝐹‘𝑝)) | |
12 | 11 | oveq2d 7271 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑝 ∨ (𝑓‘𝑝)) = (𝑝 ∨ (𝐹‘𝑝))) |
13 | 12 | oveq1d 7270 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊) = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)) |
14 | 13 | eqeq2d 2749 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊) ↔ 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊))) |
15 | 14 | imbi2d 340 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊)) ↔ (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)))) |
16 | 15 | ralbidv 3120 | . . . 4 ⊢ (𝑓 = 𝐹 → (∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊)) ↔ ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)))) |
17 | 16 | riotabidv 7214 | . . 3 ⊢ (𝑓 = 𝐹 → (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊))) = (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)))) |
18 | eqid 2738 | . . 3 ⊢ (𝑓 ∈ 𝑇 ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊)))) = (𝑓 ∈ 𝑇 ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊)))) | |
19 | riotaex 7216 | . . 3 ⊢ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊))) ∈ V | |
20 | 17, 18, 19 | fvmpt 6857 | . 2 ⊢ (𝐹 ∈ 𝑇 → ((𝑓 ∈ 𝑇 ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊))))‘𝐹) = (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)))) |
21 | 10, 20 | sylan9eq 2799 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) = (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 class class class wbr 5070 ↦ cmpt 5153 ‘cfv 6418 ℩crio 7211 (class class class)co 7255 Basecbs 16840 lecple 16895 joincjn 17944 meetcmee 17945 Atomscatm 37204 LHypclh 37925 LTrncltrn 38042 trLctrl 38099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-trl 38100 |
This theorem is referenced by: trlval2 38104 |
Copyright terms: Public domain | W3C validator |