| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trlval | Structured version Visualization version GIF version | ||
| Description: The value of the trace of a lattice translation. (Contributed by NM, 20-May-2012.) |
| Ref | Expression |
|---|---|
| trlset.b | ⊢ 𝐵 = (Base‘𝐾) |
| trlset.l | ⊢ ≤ = (le‘𝐾) |
| trlset.j | ⊢ ∨ = (join‘𝐾) |
| trlset.m | ⊢ ∧ = (meet‘𝐾) |
| trlset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| trlset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| trlset.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| trlset.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| trlval | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) = (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlset.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | trlset.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | trlset.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 4 | trlset.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 5 | trlset.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | trlset.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | trlset.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 8 | trlset.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | trlset 40199 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝑅 = (𝑓 ∈ 𝑇 ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊))))) |
| 10 | 9 | fveq1d 6824 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑅‘𝐹) = ((𝑓 ∈ 𝑇 ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊))))‘𝐹)) |
| 11 | fveq1 6821 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑝) = (𝐹‘𝑝)) | |
| 12 | 11 | oveq2d 7362 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑝 ∨ (𝑓‘𝑝)) = (𝑝 ∨ (𝐹‘𝑝))) |
| 13 | 12 | oveq1d 7361 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊) = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)) |
| 14 | 13 | eqeq2d 2742 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊) ↔ 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊))) |
| 15 | 14 | imbi2d 340 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊)) ↔ (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)))) |
| 16 | 15 | ralbidv 3155 | . . . 4 ⊢ (𝑓 = 𝐹 → (∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊)) ↔ ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)))) |
| 17 | 16 | riotabidv 7305 | . . 3 ⊢ (𝑓 = 𝐹 → (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊))) = (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)))) |
| 18 | eqid 2731 | . . 3 ⊢ (𝑓 ∈ 𝑇 ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊)))) = (𝑓 ∈ 𝑇 ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊)))) | |
| 19 | riotaex 7307 | . . 3 ⊢ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊))) ∈ V | |
| 20 | 17, 18, 19 | fvmpt 6929 | . 2 ⊢ (𝐹 ∈ 𝑇 → ((𝑓 ∈ 𝑇 ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊))))‘𝐹) = (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)))) |
| 21 | 10, 20 | sylan9eq 2786 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) = (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 class class class wbr 5091 ↦ cmpt 5172 ‘cfv 6481 ℩crio 7302 (class class class)co 7346 Basecbs 17117 lecple 17165 joincjn 18214 meetcmee 18215 Atomscatm 39301 LHypclh 40022 LTrncltrn 40139 trLctrl 40196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-trl 40197 |
| This theorem is referenced by: trlval2 40201 |
| Copyright terms: Public domain | W3C validator |