Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > trlval | Structured version Visualization version GIF version |
Description: The value of the trace of a lattice translation. (Contributed by NM, 20-May-2012.) |
Ref | Expression |
---|---|
trlset.b | ⊢ 𝐵 = (Base‘𝐾) |
trlset.l | ⊢ ≤ = (le‘𝐾) |
trlset.j | ⊢ ∨ = (join‘𝐾) |
trlset.m | ⊢ ∧ = (meet‘𝐾) |
trlset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
trlset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
trlset.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
trlset.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
trlval | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) = (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlset.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | trlset.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | trlset.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
4 | trlset.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
5 | trlset.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | trlset.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | trlset.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | trlset.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | trlset 38154 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝑅 = (𝑓 ∈ 𝑇 ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊))))) |
10 | 9 | fveq1d 6770 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑅‘𝐹) = ((𝑓 ∈ 𝑇 ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊))))‘𝐹)) |
11 | fveq1 6767 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑝) = (𝐹‘𝑝)) | |
12 | 11 | oveq2d 7284 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑝 ∨ (𝑓‘𝑝)) = (𝑝 ∨ (𝐹‘𝑝))) |
13 | 12 | oveq1d 7283 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊) = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)) |
14 | 13 | eqeq2d 2750 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊) ↔ 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊))) |
15 | 14 | imbi2d 340 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊)) ↔ (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)))) |
16 | 15 | ralbidv 3122 | . . . 4 ⊢ (𝑓 = 𝐹 → (∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊)) ↔ ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)))) |
17 | 16 | riotabidv 7227 | . . 3 ⊢ (𝑓 = 𝐹 → (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊))) = (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)))) |
18 | eqid 2739 | . . 3 ⊢ (𝑓 ∈ 𝑇 ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊)))) = (𝑓 ∈ 𝑇 ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊)))) | |
19 | riotaex 7229 | . . 3 ⊢ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊))) ∈ V | |
20 | 17, 18, 19 | fvmpt 6869 | . 2 ⊢ (𝐹 ∈ 𝑇 → ((𝑓 ∈ 𝑇 ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊))))‘𝐹) = (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)))) |
21 | 10, 20 | sylan9eq 2799 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) = (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∀wral 3065 class class class wbr 5078 ↦ cmpt 5161 ‘cfv 6430 ℩crio 7224 (class class class)co 7268 Basecbs 16893 lecple 16950 joincjn 18010 meetcmee 18011 Atomscatm 37256 LHypclh 37977 LTrncltrn 38094 trLctrl 38151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-trl 38152 |
This theorem is referenced by: trlval2 38156 |
Copyright terms: Public domain | W3C validator |