|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trlval | Structured version Visualization version GIF version | ||
| Description: The value of the trace of a lattice translation. (Contributed by NM, 20-May-2012.) | 
| Ref | Expression | 
|---|---|
| trlset.b | ⊢ 𝐵 = (Base‘𝐾) | 
| trlset.l | ⊢ ≤ = (le‘𝐾) | 
| trlset.j | ⊢ ∨ = (join‘𝐾) | 
| trlset.m | ⊢ ∧ = (meet‘𝐾) | 
| trlset.a | ⊢ 𝐴 = (Atoms‘𝐾) | 
| trlset.h | ⊢ 𝐻 = (LHyp‘𝐾) | 
| trlset.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| trlset.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | 
| Ref | Expression | 
|---|---|
| trlval | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) = (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | trlset.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | trlset.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | trlset.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 4 | trlset.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 5 | trlset.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | trlset.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | trlset.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 8 | trlset.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | trlset 40163 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝑅 = (𝑓 ∈ 𝑇 ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊))))) | 
| 10 | 9 | fveq1d 6908 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑅‘𝐹) = ((𝑓 ∈ 𝑇 ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊))))‘𝐹)) | 
| 11 | fveq1 6905 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑝) = (𝐹‘𝑝)) | |
| 12 | 11 | oveq2d 7447 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑝 ∨ (𝑓‘𝑝)) = (𝑝 ∨ (𝐹‘𝑝))) | 
| 13 | 12 | oveq1d 7446 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊) = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)) | 
| 14 | 13 | eqeq2d 2748 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊) ↔ 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊))) | 
| 15 | 14 | imbi2d 340 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊)) ↔ (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)))) | 
| 16 | 15 | ralbidv 3178 | . . . 4 ⊢ (𝑓 = 𝐹 → (∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊)) ↔ ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)))) | 
| 17 | 16 | riotabidv 7390 | . . 3 ⊢ (𝑓 = 𝐹 → (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊))) = (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)))) | 
| 18 | eqid 2737 | . . 3 ⊢ (𝑓 ∈ 𝑇 ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊)))) = (𝑓 ∈ 𝑇 ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊)))) | |
| 19 | riotaex 7392 | . . 3 ⊢ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊))) ∈ V | |
| 20 | 17, 18, 19 | fvmpt 7016 | . 2 ⊢ (𝐹 ∈ 𝑇 → ((𝑓 ∈ 𝑇 ↦ (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊))))‘𝐹) = (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)))) | 
| 21 | 10, 20 | sylan9eq 2797 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) = (℩𝑥 ∈ 𝐵 ∀𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 → 𝑥 = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 class class class wbr 5143 ↦ cmpt 5225 ‘cfv 6561 ℩crio 7387 (class class class)co 7431 Basecbs 17247 lecple 17304 joincjn 18357 meetcmee 18358 Atomscatm 39264 LHypclh 39986 LTrncltrn 40103 trLctrl 40160 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-trl 40161 | 
| This theorem is referenced by: trlval2 40165 | 
| Copyright terms: Public domain | W3C validator |