![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tsmslem1 | Structured version Visualization version GIF version |
Description: The finite partial sums of a function 𝐹 are defined in a commutative monoid. (Contributed by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
tsmslem1.b | ⊢ 𝐵 = (Base‘𝐺) |
tsmslem1.s | ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) |
tsmslem1.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
tsmslem1.a | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
tsmslem1.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
tsmslem1 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝐺 Σg (𝐹 ↾ 𝑋)) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsmslem1.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2731 | . 2 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
3 | tsmslem1.1 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | 3 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → 𝐺 ∈ CMnd) |
5 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
6 | tsmslem1.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → 𝐹:𝐴⟶𝐵) |
8 | tsmslem1.s | . . . . 5 ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) | |
9 | 5, 8 | eleqtrdi 2842 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ (𝒫 𝐴 ∩ Fin)) |
10 | elfpw 9360 | . . . . 5 ⊢ (𝑋 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin)) | |
11 | 10 | simplbi 497 | . . . 4 ⊢ (𝑋 ∈ (𝒫 𝐴 ∩ Fin) → 𝑋 ⊆ 𝐴) |
12 | 9, 11 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → 𝑋 ⊆ 𝐴) |
13 | 7, 12 | fssresd 6758 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝐹 ↾ 𝑋):𝑋⟶𝐵) |
14 | 9 | elin2d 4199 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ Fin) |
15 | fvexd 6906 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (0g‘𝐺) ∈ V) | |
16 | 13, 14, 15 | fdmfifsupp 9379 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝐹 ↾ 𝑋) finSupp (0g‘𝐺)) |
17 | 1, 2, 4, 5, 13, 16 | gsumcl 19831 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑆) → (𝐺 Σg (𝐹 ↾ 𝑋)) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∩ cin 3947 ⊆ wss 3948 𝒫 cpw 4602 ↾ cres 5678 ⟶wf 6539 ‘cfv 6543 (class class class)co 7412 Fincfn 8945 Basecbs 17151 0gc0g 17392 Σg cgsu 17393 CMndccmn 19696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8152 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fsupp 9368 df-oi 9511 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-n0 12480 df-z 12566 df-uz 12830 df-fz 13492 df-fzo 13635 df-seq 13974 df-hash 14298 df-0g 17394 df-gsum 17395 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-cntz 19229 df-cmn 19698 |
This theorem is referenced by: eltsms 23958 haustsms 23961 tsmscls 23963 tsmsmhm 23971 tsmsadd 23972 |
Copyright terms: Public domain | W3C validator |