Step | Hyp | Ref
| Expression |
1 | | eqid 2799 |
. . . . 5
⊢ ran
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦)) = ran (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦)) |
2 | 1 | txbasex 21698 |
. . . 4
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → ran (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦)) ∈ V) |
3 | 2 | adantr 473 |
. . 3
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)) → ran (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦)) ∈ V) |
4 | | resmpt2 6992 |
. . . . . 6
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦)) ↾ (𝐴 × 𝐶)) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ (𝑥 × 𝑦))) |
5 | | resss 5632 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦)) ↾ (𝐴 × 𝐶)) ⊆ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦)) |
6 | 4, 5 | syl6eqssr 3852 |
. . . . 5
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ (𝑥 × 𝑦)) ⊆ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦))) |
7 | 6 | adantl 474 |
. . . 4
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ (𝑥 × 𝑦)) ⊆ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦))) |
8 | | rnss 5557 |
. . . 4
⊢ ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ (𝑥 × 𝑦)) ⊆ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦)) → ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ (𝑥 × 𝑦)) ⊆ ran (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦))) |
9 | 7, 8 | syl 17 |
. . 3
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)) → ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ (𝑥 × 𝑦)) ⊆ ran (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦))) |
10 | | tgss 21101 |
. . 3
⊢ ((ran
(𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦)) ∈ V ∧ ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ (𝑥 × 𝑦)) ⊆ ran (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦))) → (topGen‘ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ (𝑥 × 𝑦))) ⊆ (topGen‘ran (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦)))) |
11 | 3, 9, 10 | syl2anc 580 |
. 2
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)) → (topGen‘ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ (𝑥 × 𝑦))) ⊆ (topGen‘ran (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦)))) |
12 | | ssexg 4999 |
. . . . 5
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) |
13 | | ssexg 4999 |
. . . . 5
⊢ ((𝐶 ⊆ 𝐷 ∧ 𝐷 ∈ 𝑊) → 𝐶 ∈ V) |
14 | | eqid 2799 |
. . . . . 6
⊢ ran
(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ (𝑥 × 𝑦)) = ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ (𝑥 × 𝑦)) |
15 | 14 | txval 21696 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴 ×t 𝐶) = (topGen‘ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ (𝑥 × 𝑦)))) |
16 | 12, 13, 15 | syl2an 590 |
. . . 4
⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ⊆ 𝐷 ∧ 𝐷 ∈ 𝑊)) → (𝐴 ×t 𝐶) = (topGen‘ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ (𝑥 × 𝑦)))) |
17 | 16 | an4s 651 |
. . 3
⊢ (((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) ∧ (𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝐴 ×t 𝐶) = (topGen‘ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ (𝑥 × 𝑦)))) |
18 | 17 | ancoms 451 |
. 2
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)) → (𝐴 ×t 𝐶) = (topGen‘ran (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ (𝑥 × 𝑦)))) |
19 | 1 | txval 21696 |
. . 3
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (𝐵 ×t 𝐷) = (topGen‘ran (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦)))) |
20 | 19 | adantr 473 |
. 2
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)) → (𝐵 ×t 𝐷) = (topGen‘ran (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ (𝑥 × 𝑦)))) |
21 | 11, 18, 20 | 3sstr4d 3844 |
1
⊢ (((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)) → (𝐴 ×t 𝐶) ⊆ (𝐵 ×t 𝐷)) |