MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txss12 Structured version   Visualization version   GIF version

Theorem txss12 21901
Description: Subset property of the topological product. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
txss12 (((𝐵𝑉𝐷𝑊) ∧ (𝐴𝐵𝐶𝐷)) → (𝐴 ×t 𝐶) ⊆ (𝐵 ×t 𝐷))

Proof of Theorem txss12
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2797 . . . 4 ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦)) = ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦))
21txbasex 21862 . . 3 ((𝐵𝑉𝐷𝑊) → ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦)) ∈ V)
3 resmpo 7135 . . . . . 6 ((𝐴𝐵𝐶𝐷) → ((𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦)) ↾ (𝐴 × 𝐶)) = (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦)))
4 resss 5766 . . . . . 6 ((𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦)) ↾ (𝐴 × 𝐶)) ⊆ (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦))
53, 4syl6eqssr 3949 . . . . 5 ((𝐴𝐵𝐶𝐷) → (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦)) ⊆ (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦)))
65adantl 482 . . . 4 (((𝐵𝑉𝐷𝑊) ∧ (𝐴𝐵𝐶𝐷)) → (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦)) ⊆ (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦)))
7 rnss 5698 . . . 4 ((𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦)) ⊆ (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦)) → ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦)) ⊆ ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦)))
86, 7syl 17 . . 3 (((𝐵𝑉𝐷𝑊) ∧ (𝐴𝐵𝐶𝐷)) → ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦)) ⊆ ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦)))
9 tgss 21264 . . 3 ((ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦)) ∈ V ∧ ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦)) ⊆ ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦))) → (topGen‘ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦))) ⊆ (topGen‘ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦))))
102, 8, 9syl2an2r 681 . 2 (((𝐵𝑉𝐷𝑊) ∧ (𝐴𝐵𝐶𝐷)) → (topGen‘ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦))) ⊆ (topGen‘ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦))))
11 ssexg 5125 . . . . 5 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
12 ssexg 5125 . . . . 5 ((𝐶𝐷𝐷𝑊) → 𝐶 ∈ V)
13 eqid 2797 . . . . . 6 ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦)) = ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦))
1413txval 21860 . . . . 5 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴 ×t 𝐶) = (topGen‘ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦))))
1511, 12, 14syl2an 595 . . . 4 (((𝐴𝐵𝐵𝑉) ∧ (𝐶𝐷𝐷𝑊)) → (𝐴 ×t 𝐶) = (topGen‘ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦))))
1615an4s 656 . . 3 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝑉𝐷𝑊)) → (𝐴 ×t 𝐶) = (topGen‘ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦))))
1716ancoms 459 . 2 (((𝐵𝑉𝐷𝑊) ∧ (𝐴𝐵𝐶𝐷)) → (𝐴 ×t 𝐶) = (topGen‘ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦))))
181txval 21860 . . 3 ((𝐵𝑉𝐷𝑊) → (𝐵 ×t 𝐷) = (topGen‘ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦))))
1918adantr 481 . 2 (((𝐵𝑉𝐷𝑊) ∧ (𝐴𝐵𝐶𝐷)) → (𝐵 ×t 𝐷) = (topGen‘ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦))))
2010, 17, 193sstr4d 3941 1 (((𝐵𝑉𝐷𝑊) ∧ (𝐴𝐵𝐶𝐷)) → (𝐴 ×t 𝐶) ⊆ (𝐵 ×t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1525  wcel 2083  Vcvv 3440  wss 3865   × cxp 5448  ran crn 5451  cres 5452  cfv 6232  (class class class)co 7023  cmpo 7025  topGenctg 16544   ×t ctx 21856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-fv 6240  df-ov 7026  df-oprab 7027  df-mpo 7028  df-1st 7552  df-2nd 7553  df-topgen 16550  df-tx 21858
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator