MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txss12 Structured version   Visualization version   GIF version

Theorem txss12 23492
Description: Subset property of the topological product. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
txss12 (((𝐵𝑉𝐷𝑊) ∧ (𝐴𝐵𝐶𝐷)) → (𝐴 ×t 𝐶) ⊆ (𝐵 ×t 𝐷))

Proof of Theorem txss12
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦)) = ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦))
21txbasex 23453 . . 3 ((𝐵𝑉𝐷𝑊) → ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦)) ∈ V)
3 resmpo 7509 . . . . . 6 ((𝐴𝐵𝐶𝐷) → ((𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦)) ↾ (𝐴 × 𝐶)) = (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦)))
4 resss 5972 . . . . . 6 ((𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦)) ↾ (𝐴 × 𝐶)) ⊆ (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦))
53, 4eqsstrrdi 3992 . . . . 5 ((𝐴𝐵𝐶𝐷) → (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦)) ⊆ (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦)))
65adantl 481 . . . 4 (((𝐵𝑉𝐷𝑊) ∧ (𝐴𝐵𝐶𝐷)) → (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦)) ⊆ (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦)))
7 rnss 5903 . . . 4 ((𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦)) ⊆ (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦)) → ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦)) ⊆ ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦)))
86, 7syl 17 . . 3 (((𝐵𝑉𝐷𝑊) ∧ (𝐴𝐵𝐶𝐷)) → ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦)) ⊆ ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦)))
9 tgss 22855 . . 3 ((ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦)) ∈ V ∧ ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦)) ⊆ ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦))) → (topGen‘ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦))) ⊆ (topGen‘ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦))))
102, 8, 9syl2an2r 685 . 2 (((𝐵𝑉𝐷𝑊) ∧ (𝐴𝐵𝐶𝐷)) → (topGen‘ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦))) ⊆ (topGen‘ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦))))
11 ssexg 5278 . . . . 5 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
12 ssexg 5278 . . . . 5 ((𝐶𝐷𝐷𝑊) → 𝐶 ∈ V)
13 eqid 2729 . . . . . 6 ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦)) = ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦))
1413txval 23451 . . . . 5 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴 ×t 𝐶) = (topGen‘ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦))))
1511, 12, 14syl2an 596 . . . 4 (((𝐴𝐵𝐵𝑉) ∧ (𝐶𝐷𝐷𝑊)) → (𝐴 ×t 𝐶) = (topGen‘ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦))))
1615an4s 660 . . 3 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝑉𝐷𝑊)) → (𝐴 ×t 𝐶) = (topGen‘ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦))))
1716ancoms 458 . 2 (((𝐵𝑉𝐷𝑊) ∧ (𝐴𝐵𝐶𝐷)) → (𝐴 ×t 𝐶) = (topGen‘ran (𝑥𝐴, 𝑦𝐶 ↦ (𝑥 × 𝑦))))
181txval 23451 . . 3 ((𝐵𝑉𝐷𝑊) → (𝐵 ×t 𝐷) = (topGen‘ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦))))
1918adantr 480 . 2 (((𝐵𝑉𝐷𝑊) ∧ (𝐴𝐵𝐶𝐷)) → (𝐵 ×t 𝐷) = (topGen‘ran (𝑥𝐵, 𝑦𝐷 ↦ (𝑥 × 𝑦))))
2010, 17, 193sstr4d 4002 1 (((𝐵𝑉𝐷𝑊) ∧ (𝐴𝐵𝐶𝐷)) → (𝐴 ×t 𝐶) ⊆ (𝐵 ×t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914   × cxp 5636  ran crn 5639  cres 5640  cfv 6511  (class class class)co 7387  cmpo 7389  topGenctg 17400   ×t ctx 23447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-topgen 17406  df-tx 23449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator