Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . . . . 6
β’ ran
(π’ β π
, π£ β π β¦ (π’ Γ π£)) = ran (π’ β π
, π£ β π β¦ (π’ Γ π£)) |
2 | 1 | txbasex 23061 |
. . . . 5
β’ ((π
β π β§ π β π) β ran (π’ β π
, π£ β π β¦ (π’ Γ π£)) β V) |
3 | | bastg 22460 |
. . . . 5
β’ (ran
(π’ β π
, π£ β π β¦ (π’ Γ π£)) β V β ran (π’ β π
, π£ β π β¦ (π’ Γ π£)) β (topGenβran (π’ β π
, π£ β π β¦ (π’ Γ π£)))) |
4 | 2, 3 | syl 17 |
. . . 4
β’ ((π
β π β§ π β π) β ran (π’ β π
, π£ β π β¦ (π’ Γ π£)) β (topGenβran (π’ β π
, π£ β π β¦ (π’ Γ π£)))) |
5 | 4 | adantr 481 |
. . 3
β’ (((π
β π β§ π β π) β§ (π΄ β π
β§ π΅ β π)) β ran (π’ β π
, π£ β π β¦ (π’ Γ π£)) β (topGenβran (π’ β π
, π£ β π β¦ (π’ Γ π£)))) |
6 | | eqid 2732 |
. . . . . 6
β’ (π΄ Γ π΅) = (π΄ Γ π΅) |
7 | | xpeq1 5689 |
. . . . . . . 8
β’ (π’ = π΄ β (π’ Γ π£) = (π΄ Γ π£)) |
8 | 7 | eqeq2d 2743 |
. . . . . . 7
β’ (π’ = π΄ β ((π΄ Γ π΅) = (π’ Γ π£) β (π΄ Γ π΅) = (π΄ Γ π£))) |
9 | | xpeq2 5696 |
. . . . . . . 8
β’ (π£ = π΅ β (π΄ Γ π£) = (π΄ Γ π΅)) |
10 | 9 | eqeq2d 2743 |
. . . . . . 7
β’ (π£ = π΅ β ((π΄ Γ π΅) = (π΄ Γ π£) β (π΄ Γ π΅) = (π΄ Γ π΅))) |
11 | 8, 10 | rspc2ev 3623 |
. . . . . 6
β’ ((π΄ β π
β§ π΅ β π β§ (π΄ Γ π΅) = (π΄ Γ π΅)) β βπ’ β π
βπ£ β π (π΄ Γ π΅) = (π’ Γ π£)) |
12 | 6, 11 | mp3an3 1450 |
. . . . 5
β’ ((π΄ β π
β§ π΅ β π) β βπ’ β π
βπ£ β π (π΄ Γ π΅) = (π’ Γ π£)) |
13 | | xpexg 7733 |
. . . . . 6
β’ ((π΄ β π
β§ π΅ β π) β (π΄ Γ π΅) β V) |
14 | | eqid 2732 |
. . . . . . 7
β’ (π’ β π
, π£ β π β¦ (π’ Γ π£)) = (π’ β π
, π£ β π β¦ (π’ Γ π£)) |
15 | 14 | elrnmpog 7540 |
. . . . . 6
β’ ((π΄ Γ π΅) β V β ((π΄ Γ π΅) β ran (π’ β π
, π£ β π β¦ (π’ Γ π£)) β βπ’ β π
βπ£ β π (π΄ Γ π΅) = (π’ Γ π£))) |
16 | 13, 15 | syl 17 |
. . . . 5
β’ ((π΄ β π
β§ π΅ β π) β ((π΄ Γ π΅) β ran (π’ β π
, π£ β π β¦ (π’ Γ π£)) β βπ’ β π
βπ£ β π (π΄ Γ π΅) = (π’ Γ π£))) |
17 | 12, 16 | mpbird 256 |
. . . 4
β’ ((π΄ β π
β§ π΅ β π) β (π΄ Γ π΅) β ran (π’ β π
, π£ β π β¦ (π’ Γ π£))) |
18 | 17 | adantl 482 |
. . 3
β’ (((π
β π β§ π β π) β§ (π΄ β π
β§ π΅ β π)) β (π΄ Γ π΅) β ran (π’ β π
, π£ β π β¦ (π’ Γ π£))) |
19 | 5, 18 | sseldd 3982 |
. 2
β’ (((π
β π β§ π β π) β§ (π΄ β π
β§ π΅ β π)) β (π΄ Γ π΅) β (topGenβran (π’ β π
, π£ β π β¦ (π’ Γ π£)))) |
20 | 1 | txval 23059 |
. . 3
β’ ((π
β π β§ π β π) β (π
Γt π) = (topGenβran (π’ β π
, π£ β π β¦ (π’ Γ π£)))) |
21 | 20 | adantr 481 |
. 2
β’ (((π
β π β§ π β π) β§ (π΄ β π
β§ π΅ β π)) β (π
Γt π) = (topGenβran (π’ β π
, π£ β π β¦ (π’ Γ π£)))) |
22 | 19, 21 | eleqtrrd 2836 |
1
β’ (((π
β π β§ π β π) β§ (π΄ β π
β§ π΅ β π)) β (π΄ Γ π΅) β (π
Γt π)) |