MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txopn Structured version   Visualization version   GIF version

Theorem txopn 23631
Description: The product of two open sets is open in the product topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
txopn (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑅𝐵𝑆)) → (𝐴 × 𝐵) ∈ (𝑅 ×t 𝑆))

Proof of Theorem txopn
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . . 6 ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) = ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))
21txbasex 23595 . . . . 5 ((𝑅𝑉𝑆𝑊) → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ∈ V)
3 bastg 22994 . . . . 5 (ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ∈ V → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ⊆ (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
42, 3syl 17 . . . 4 ((𝑅𝑉𝑆𝑊) → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ⊆ (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
54adantr 480 . . 3 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑅𝐵𝑆)) → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ⊆ (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
6 eqid 2740 . . . . . 6 (𝐴 × 𝐵) = (𝐴 × 𝐵)
7 xpeq1 5714 . . . . . . . 8 (𝑢 = 𝐴 → (𝑢 × 𝑣) = (𝐴 × 𝑣))
87eqeq2d 2751 . . . . . . 7 (𝑢 = 𝐴 → ((𝐴 × 𝐵) = (𝑢 × 𝑣) ↔ (𝐴 × 𝐵) = (𝐴 × 𝑣)))
9 xpeq2 5721 . . . . . . . 8 (𝑣 = 𝐵 → (𝐴 × 𝑣) = (𝐴 × 𝐵))
109eqeq2d 2751 . . . . . . 7 (𝑣 = 𝐵 → ((𝐴 × 𝐵) = (𝐴 × 𝑣) ↔ (𝐴 × 𝐵) = (𝐴 × 𝐵)))
118, 10rspc2ev 3648 . . . . . 6 ((𝐴𝑅𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐴 × 𝐵)) → ∃𝑢𝑅𝑣𝑆 (𝐴 × 𝐵) = (𝑢 × 𝑣))
126, 11mp3an3 1450 . . . . 5 ((𝐴𝑅𝐵𝑆) → ∃𝑢𝑅𝑣𝑆 (𝐴 × 𝐵) = (𝑢 × 𝑣))
13 xpexg 7785 . . . . . 6 ((𝐴𝑅𝐵𝑆) → (𝐴 × 𝐵) ∈ V)
14 eqid 2740 . . . . . . 7 (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) = (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))
1514elrnmpog 7585 . . . . . 6 ((𝐴 × 𝐵) ∈ V → ((𝐴 × 𝐵) ∈ ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ↔ ∃𝑢𝑅𝑣𝑆 (𝐴 × 𝐵) = (𝑢 × 𝑣)))
1613, 15syl 17 . . . . 5 ((𝐴𝑅𝐵𝑆) → ((𝐴 × 𝐵) ∈ ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ↔ ∃𝑢𝑅𝑣𝑆 (𝐴 × 𝐵) = (𝑢 × 𝑣)))
1712, 16mpbird 257 . . . 4 ((𝐴𝑅𝐵𝑆) → (𝐴 × 𝐵) ∈ ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)))
1817adantl 481 . . 3 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑅𝐵𝑆)) → (𝐴 × 𝐵) ∈ ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)))
195, 18sseldd 4009 . 2 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑅𝐵𝑆)) → (𝐴 × 𝐵) ∈ (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
201txval 23593 . . 3 ((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
2120adantr 480 . 2 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑅𝐵𝑆)) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
2219, 21eleqtrrd 2847 1 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑅𝐵𝑆)) → (𝐴 × 𝐵) ∈ (𝑅 ×t 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  Vcvv 3488  wss 3976   × cxp 5698  ran crn 5701  cfv 6573  (class class class)co 7448  cmpo 7450  topGenctg 17497   ×t ctx 23589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-topgen 17503  df-tx 23591
This theorem is referenced by:  txcld  23632  txbasval  23635  neitx  23636  tx1cn  23638  tx2cn  23639  txlly  23665  txnlly  23666  txhaus  23676  txlm  23677  tx1stc  23679  txkgen  23681  xkococnlem  23688  cxpcn3  26809  cvmlift2lem11  35281  cvmlift2lem12  35282
  Copyright terms: Public domain W3C validator