![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uffclsflim | Structured version Visualization version GIF version |
Description: The cluster points of an ultrafilter are its limit points. (Contributed by Jeff Hankins, 11-Dec-2009.) (Revised by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
uffclsflim | ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝐽 fClus 𝐹) = (𝐽 fLim 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ufilfil 23271 | . . . . . . 7 ⊢ (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋)) | |
2 | fclsfnflim 23394 | . . . . . . 7 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ ∃𝑓 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ ∃𝑓 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) |
4 | 3 | biimpa 478 | . . . . 5 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → ∃𝑓 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓))) |
5 | simprrr 781 | . . . . . 6 ⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑥 ∈ (𝐽 fLim 𝑓)) | |
6 | simpll 766 | . . . . . . . 8 ⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝐹 ∈ (UFil‘𝑋)) | |
7 | simprl 770 | . . . . . . . 8 ⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑓 ∈ (Fil‘𝑋)) | |
8 | simprrl 780 | . . . . . . . 8 ⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝐹 ⊆ 𝑓) | |
9 | ufilmax 23274 | . . . . . . . 8 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝑓) → 𝐹 = 𝑓) | |
10 | 6, 7, 8, 9 | syl3anc 1372 | . . . . . . 7 ⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝐹 = 𝑓) |
11 | 10 | oveq2d 7374 | . . . . . 6 ⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → (𝐽 fLim 𝐹) = (𝐽 fLim 𝑓)) |
12 | 5, 11 | eleqtrrd 2837 | . . . . 5 ⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑥 ∈ (𝐽 fLim 𝐹)) |
13 | 4, 12 | rexlimddv 3155 | . . . 4 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝑥 ∈ (𝐽 fLim 𝐹)) |
14 | 13 | ex 414 | . . 3 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ (𝐽 fClus 𝐹) → 𝑥 ∈ (𝐽 fLim 𝐹))) |
15 | 14 | ssrdv 3951 | . 2 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝐽 fClus 𝐹) ⊆ (𝐽 fLim 𝐹)) |
16 | flimfcls 23393 | . . 3 ⊢ (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹) | |
17 | 16 | a1i 11 | . 2 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹)) |
18 | 15, 17 | eqssd 3962 | 1 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝐽 fClus 𝐹) = (𝐽 fLim 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃wrex 3070 ⊆ wss 3911 ‘cfv 6497 (class class class)co 7358 Filcfil 23212 UFilcufil 23266 fLim cflim 23301 fClus cfcls 23303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-iin 4958 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1o 8413 df-er 8651 df-en 8887 df-fin 8890 df-fi 9352 df-fbas 20809 df-fg 20810 df-top 22259 df-topon 22276 df-cld 22386 df-ntr 22387 df-cls 22388 df-nei 22465 df-fil 23213 df-ufil 23268 df-flim 23306 df-fcls 23308 |
This theorem is referenced by: ufilcmp 23399 uffcfflf 23406 |
Copyright terms: Public domain | W3C validator |