| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uffclsflim | Structured version Visualization version GIF version | ||
| Description: The cluster points of an ultrafilter are its limit points. (Contributed by Jeff Hankins, 11-Dec-2009.) (Revised by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| uffclsflim | ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝐽 fClus 𝐹) = (𝐽 fLim 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ufilfil 23814 | . . . . . . 7 ⊢ (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋)) | |
| 2 | fclsfnflim 23937 | . . . . . . 7 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ ∃𝑓 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) | |
| 3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ ∃𝑓 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) |
| 4 | 3 | biimpa 476 | . . . . 5 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → ∃𝑓 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓))) |
| 5 | simprrr 781 | . . . . . 6 ⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑥 ∈ (𝐽 fLim 𝑓)) | |
| 6 | simpll 766 | . . . . . . . 8 ⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝐹 ∈ (UFil‘𝑋)) | |
| 7 | simprl 770 | . . . . . . . 8 ⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑓 ∈ (Fil‘𝑋)) | |
| 8 | simprrl 780 | . . . . . . . 8 ⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝐹 ⊆ 𝑓) | |
| 9 | ufilmax 23817 | . . . . . . . 8 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝑓) → 𝐹 = 𝑓) | |
| 10 | 6, 7, 8, 9 | syl3anc 1373 | . . . . . . 7 ⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝐹 = 𝑓) |
| 11 | 10 | oveq2d 7357 | . . . . . 6 ⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → (𝐽 fLim 𝐹) = (𝐽 fLim 𝑓)) |
| 12 | 5, 11 | eleqtrrd 2834 | . . . . 5 ⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑥 ∈ (𝐽 fLim 𝐹)) |
| 13 | 4, 12 | rexlimddv 3139 | . . . 4 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝑥 ∈ (𝐽 fLim 𝐹)) |
| 14 | 13 | ex 412 | . . 3 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ (𝐽 fClus 𝐹) → 𝑥 ∈ (𝐽 fLim 𝐹))) |
| 15 | 14 | ssrdv 3935 | . 2 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝐽 fClus 𝐹) ⊆ (𝐽 fLim 𝐹)) |
| 16 | flimfcls 23936 | . . 3 ⊢ (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹) | |
| 17 | 16 | a1i 11 | . 2 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹)) |
| 18 | 15, 17 | eqssd 3947 | 1 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝐽 fClus 𝐹) = (𝐽 fLim 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3897 ‘cfv 6476 (class class class)co 7341 Filcfil 23755 UFilcufil 23809 fLim cflim 23844 fClus cfcls 23846 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1o 8380 df-2o 8381 df-en 8865 df-fin 8868 df-fi 9290 df-fbas 21283 df-fg 21284 df-top 22804 df-topon 22821 df-cld 22929 df-ntr 22930 df-cls 22931 df-nei 23008 df-fil 23756 df-ufil 23811 df-flim 23849 df-fcls 23851 |
| This theorem is referenced by: ufilcmp 23942 uffcfflf 23949 |
| Copyright terms: Public domain | W3C validator |