![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uffclsflim | Structured version Visualization version GIF version |
Description: The cluster points of an ultrafilter are its limit points. (Contributed by Jeff Hankins, 11-Dec-2009.) (Revised by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
uffclsflim | ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝐽 fClus 𝐹) = (𝐽 fLim 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ufilfil 23399 | . . . . . . 7 ⊢ (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋)) | |
2 | fclsfnflim 23522 | . . . . . . 7 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ ∃𝑓 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ ∃𝑓 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) |
4 | 3 | biimpa 477 | . . . . 5 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → ∃𝑓 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓))) |
5 | simprrr 780 | . . . . . 6 ⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑥 ∈ (𝐽 fLim 𝑓)) | |
6 | simpll 765 | . . . . . . . 8 ⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝐹 ∈ (UFil‘𝑋)) | |
7 | simprl 769 | . . . . . . . 8 ⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑓 ∈ (Fil‘𝑋)) | |
8 | simprrl 779 | . . . . . . . 8 ⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝐹 ⊆ 𝑓) | |
9 | ufilmax 23402 | . . . . . . . 8 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝑓) → 𝐹 = 𝑓) | |
10 | 6, 7, 8, 9 | syl3anc 1371 | . . . . . . 7 ⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝐹 = 𝑓) |
11 | 10 | oveq2d 7421 | . . . . . 6 ⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → (𝐽 fLim 𝐹) = (𝐽 fLim 𝑓)) |
12 | 5, 11 | eleqtrrd 2836 | . . . . 5 ⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑥 ∈ (𝐽 fLim 𝐹)) |
13 | 4, 12 | rexlimddv 3161 | . . . 4 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝑥 ∈ (𝐽 fLim 𝐹)) |
14 | 13 | ex 413 | . . 3 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ (𝐽 fClus 𝐹) → 𝑥 ∈ (𝐽 fLim 𝐹))) |
15 | 14 | ssrdv 3987 | . 2 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝐽 fClus 𝐹) ⊆ (𝐽 fLim 𝐹)) |
16 | flimfcls 23521 | . . 3 ⊢ (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹) | |
17 | 16 | a1i 11 | . 2 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹)) |
18 | 15, 17 | eqssd 3998 | 1 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝐽 fClus 𝐹) = (𝐽 fLim 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 ⊆ wss 3947 ‘cfv 6540 (class class class)co 7405 Filcfil 23340 UFilcufil 23394 fLim cflim 23429 fClus cfcls 23431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1o 8462 df-er 8699 df-en 8936 df-fin 8939 df-fi 9402 df-fbas 20933 df-fg 20934 df-top 22387 df-topon 22404 df-cld 22514 df-ntr 22515 df-cls 22516 df-nei 22593 df-fil 23341 df-ufil 23396 df-flim 23434 df-fcls 23436 |
This theorem is referenced by: ufilcmp 23527 uffcfflf 23534 |
Copyright terms: Public domain | W3C validator |