![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uffclsflim | Structured version Visualization version GIF version |
Description: The cluster points of an ultrafilter are its limit points. (Contributed by Jeff Hankins, 11-Dec-2009.) (Revised by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
uffclsflim | ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝐽 fClus 𝐹) = (𝐽 fLim 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ufilfil 23933 | . . . . . . 7 ⊢ (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋)) | |
2 | fclsfnflim 24056 | . . . . . . 7 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ ∃𝑓 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ ∃𝑓 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) |
4 | 3 | biimpa 476 | . . . . 5 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → ∃𝑓 ∈ (Fil‘𝑋)(𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓))) |
5 | simprrr 781 | . . . . . 6 ⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑥 ∈ (𝐽 fLim 𝑓)) | |
6 | simpll 766 | . . . . . . . 8 ⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝐹 ∈ (UFil‘𝑋)) | |
7 | simprl 770 | . . . . . . . 8 ⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑓 ∈ (Fil‘𝑋)) | |
8 | simprrl 780 | . . . . . . . 8 ⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝐹 ⊆ 𝑓) | |
9 | ufilmax 23936 | . . . . . . . 8 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝑓) → 𝐹 = 𝑓) | |
10 | 6, 7, 8, 9 | syl3anc 1371 | . . . . . . 7 ⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝐹 = 𝑓) |
11 | 10 | oveq2d 7464 | . . . . . 6 ⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → (𝐽 fLim 𝐹) = (𝐽 fLim 𝑓)) |
12 | 5, 11 | eleqtrrd 2847 | . . . . 5 ⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹 ⊆ 𝑓 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑥 ∈ (𝐽 fLim 𝐹)) |
13 | 4, 12 | rexlimddv 3167 | . . . 4 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝑥 ∈ (𝐽 fLim 𝐹)) |
14 | 13 | ex 412 | . . 3 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ (𝐽 fClus 𝐹) → 𝑥 ∈ (𝐽 fLim 𝐹))) |
15 | 14 | ssrdv 4014 | . 2 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝐽 fClus 𝐹) ⊆ (𝐽 fLim 𝐹)) |
16 | flimfcls 24055 | . . 3 ⊢ (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹) | |
17 | 16 | a1i 11 | . 2 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹)) |
18 | 15, 17 | eqssd 4026 | 1 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝐽 fClus 𝐹) = (𝐽 fLim 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ⊆ wss 3976 ‘cfv 6573 (class class class)co 7448 Filcfil 23874 UFilcufil 23928 fLim cflim 23963 fClus cfcls 23965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1o 8522 df-2o 8523 df-en 9004 df-fin 9007 df-fi 9480 df-fbas 21384 df-fg 21385 df-top 22921 df-topon 22938 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-fil 23875 df-ufil 23930 df-flim 23968 df-fcls 23970 |
This theorem is referenced by: ufilcmp 24061 uffcfflf 24068 |
Copyright terms: Public domain | W3C validator |