MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uffclsflim Structured version   Visualization version   GIF version

Theorem uffclsflim 23966
Description: The cluster points of an ultrafilter are its limit points. (Contributed by Jeff Hankins, 11-Dec-2009.) (Revised by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
uffclsflim (𝐹 ∈ (UFil‘𝑋) → (𝐽 fClus 𝐹) = (𝐽 fLim 𝐹))

Proof of Theorem uffclsflim
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ufilfil 23839 . . . . . . 7 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
2 fclsfnflim 23962 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ ∃𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝑥 ∈ (𝐽 fLim 𝑓))))
31, 2syl 17 . . . . . 6 (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ ∃𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝑥 ∈ (𝐽 fLim 𝑓))))
43biimpa 476 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → ∃𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝑥 ∈ (𝐽 fLim 𝑓)))
5 simprrr 781 . . . . . 6 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑥 ∈ (𝐽 fLim 𝑓))
6 simpll 766 . . . . . . . 8 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝐹 ∈ (UFil‘𝑋))
7 simprl 770 . . . . . . . 8 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑓 ∈ (Fil‘𝑋))
8 simprrl 780 . . . . . . . 8 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝐹𝑓)
9 ufilmax 23842 . . . . . . . 8 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓) → 𝐹 = 𝑓)
106, 7, 8, 9syl3anc 1373 . . . . . . 7 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝐹 = 𝑓)
1110oveq2d 7371 . . . . . 6 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → (𝐽 fLim 𝐹) = (𝐽 fLim 𝑓))
125, 11eleqtrrd 2836 . . . . 5 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ (𝐹𝑓𝑥 ∈ (𝐽 fLim 𝑓)))) → 𝑥 ∈ (𝐽 fLim 𝐹))
134, 12rexlimddv 3140 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ (𝐽 fClus 𝐹)) → 𝑥 ∈ (𝐽 fLim 𝐹))
1413ex 412 . . 3 (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ (𝐽 fClus 𝐹) → 𝑥 ∈ (𝐽 fLim 𝐹)))
1514ssrdv 3936 . 2 (𝐹 ∈ (UFil‘𝑋) → (𝐽 fClus 𝐹) ⊆ (𝐽 fLim 𝐹))
16 flimfcls 23961 . . 3 (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹)
1716a1i 11 . 2 (𝐹 ∈ (UFil‘𝑋) → (𝐽 fLim 𝐹) ⊆ (𝐽 fClus 𝐹))
1815, 17eqssd 3948 1 (𝐹 ∈ (UFil‘𝑋) → (𝐽 fClus 𝐹) = (𝐽 fLim 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wrex 3057  wss 3898  cfv 6489  (class class class)co 7355  Filcfil 23780  UFilcufil 23834   fLim cflim 23869   fClus cfcls 23871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1o 8394  df-2o 8395  df-en 8880  df-fin 8883  df-fi 9306  df-fbas 21297  df-fg 21298  df-top 22829  df-topon 22846  df-cld 22954  df-ntr 22955  df-cls 22956  df-nei 23033  df-fil 23781  df-ufil 23836  df-flim 23874  df-fcls 23876
This theorem is referenced by:  ufilcmp  23967  uffcfflf  23974
  Copyright terms: Public domain W3C validator