MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmufil Structured version   Visualization version   GIF version

Theorem fmufil 23988
Description: An image filter of an ultrafilter is an ultrafilter. (Contributed by Jeff Hankins, 11-Dec-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
fmufil ((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (UFil‘𝑋))

Proof of Theorem fmufil
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ufilfil 23933 . . . 4 (𝐿 ∈ (UFil‘𝑌) → 𝐿 ∈ (Fil‘𝑌))
2 filfbas 23877 . . . 4 (𝐿 ∈ (Fil‘𝑌) → 𝐿 ∈ (fBas‘𝑌))
31, 2syl 17 . . 3 (𝐿 ∈ (UFil‘𝑌) → 𝐿 ∈ (fBas‘𝑌))
4 fmfil 23973 . . 3 ((𝑋𝐴𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋))
53, 4syl3an2 1164 . 2 ((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋))
6 simpl2 1192 . . . . . . 7 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) → 𝐿 ∈ (UFil‘𝑌))
76, 1, 23syl 18 . . . . . 6 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) → 𝐿 ∈ (fBas‘𝑌))
8 simprl 770 . . . . . 6 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) → 𝑓 ∈ (Fil‘𝑋))
9 simpl3 1193 . . . . . 6 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) → 𝐹:𝑌𝑋)
10 simprr 772 . . . . . 6 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) → ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)
117, 8, 9, 10fmfnfm 23987 . . . . 5 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) → ∃𝑔 ∈ (Fil‘𝑌)(𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))
126adantr 480 . . . . . . . 8 ((((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) ∧ (𝑔 ∈ (Fil‘𝑌) ∧ (𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))) → 𝐿 ∈ (UFil‘𝑌))
13 simprl 770 . . . . . . . 8 ((((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) ∧ (𝑔 ∈ (Fil‘𝑌) ∧ (𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))) → 𝑔 ∈ (Fil‘𝑌))
14 simprrl 780 . . . . . . . 8 ((((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) ∧ (𝑔 ∈ (Fil‘𝑌) ∧ (𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))) → 𝐿𝑔)
15 ufilmax 23936 . . . . . . . 8 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝑔 ∈ (Fil‘𝑌) ∧ 𝐿𝑔) → 𝐿 = 𝑔)
1612, 13, 14, 15syl3anc 1371 . . . . . . 7 ((((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) ∧ (𝑔 ∈ (Fil‘𝑌) ∧ (𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))) → 𝐿 = 𝑔)
1716fveq2d 6924 . . . . . 6 ((((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) ∧ (𝑔 ∈ (Fil‘𝑌) ∧ (𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))) → ((𝑋 FilMap 𝐹)‘𝐿) = ((𝑋 FilMap 𝐹)‘𝑔))
18 simprrr 781 . . . . . 6 ((((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) ∧ (𝑔 ∈ (Fil‘𝑌) ∧ (𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))) → 𝑓 = ((𝑋 FilMap 𝐹)‘𝑔))
1917, 18eqtr4d 2783 . . . . 5 ((((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) ∧ (𝑔 ∈ (Fil‘𝑌) ∧ (𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))) → ((𝑋 FilMap 𝐹)‘𝐿) = 𝑓)
2011, 19rexlimddv 3167 . . . 4 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) → ((𝑋 FilMap 𝐹)‘𝐿) = 𝑓)
2120expr 456 . . 3 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑋)) → (((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓 → ((𝑋 FilMap 𝐹)‘𝐿) = 𝑓))
2221ralrimiva 3152 . 2 ((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) → ∀𝑓 ∈ (Fil‘𝑋)(((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓 → ((𝑋 FilMap 𝐹)‘𝐿) = 𝑓))
23 isufil2 23937 . 2 (((𝑋 FilMap 𝐹)‘𝐿) ∈ (UFil‘𝑋) ↔ (((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓 → ((𝑋 FilMap 𝐹)‘𝐿) = 𝑓)))
245, 22, 23sylanbrc 582 1 ((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (UFil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wss 3976  wf 6569  cfv 6573  (class class class)co 7448  fBascfbas 21375  Filcfil 23874  UFilcufil 23928   FilMap cfm 23962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1o 8522  df-2o 8523  df-en 9004  df-fin 9007  df-fi 9480  df-fbas 21384  df-fg 21385  df-fil 23875  df-ufil 23930  df-fm 23967
This theorem is referenced by:  ufldom  23991  uffcfflf  24068
  Copyright terms: Public domain W3C validator