MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmufil Structured version   Visualization version   GIF version

Theorem fmufil 23018
Description: An image filter of an ultrafilter is an ultrafilter. (Contributed by Jeff Hankins, 11-Dec-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
fmufil ((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (UFil‘𝑋))

Proof of Theorem fmufil
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ufilfil 22963 . . . 4 (𝐿 ∈ (UFil‘𝑌) → 𝐿 ∈ (Fil‘𝑌))
2 filfbas 22907 . . . 4 (𝐿 ∈ (Fil‘𝑌) → 𝐿 ∈ (fBas‘𝑌))
31, 2syl 17 . . 3 (𝐿 ∈ (UFil‘𝑌) → 𝐿 ∈ (fBas‘𝑌))
4 fmfil 23003 . . 3 ((𝑋𝐴𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋))
53, 4syl3an2 1162 . 2 ((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋))
6 simpl2 1190 . . . . . . 7 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) → 𝐿 ∈ (UFil‘𝑌))
76, 1, 23syl 18 . . . . . 6 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) → 𝐿 ∈ (fBas‘𝑌))
8 simprl 767 . . . . . 6 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) → 𝑓 ∈ (Fil‘𝑋))
9 simpl3 1191 . . . . . 6 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) → 𝐹:𝑌𝑋)
10 simprr 769 . . . . . 6 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) → ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)
117, 8, 9, 10fmfnfm 23017 . . . . 5 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) → ∃𝑔 ∈ (Fil‘𝑌)(𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))
126adantr 480 . . . . . . . 8 ((((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) ∧ (𝑔 ∈ (Fil‘𝑌) ∧ (𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))) → 𝐿 ∈ (UFil‘𝑌))
13 simprl 767 . . . . . . . 8 ((((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) ∧ (𝑔 ∈ (Fil‘𝑌) ∧ (𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))) → 𝑔 ∈ (Fil‘𝑌))
14 simprrl 777 . . . . . . . 8 ((((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) ∧ (𝑔 ∈ (Fil‘𝑌) ∧ (𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))) → 𝐿𝑔)
15 ufilmax 22966 . . . . . . . 8 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝑔 ∈ (Fil‘𝑌) ∧ 𝐿𝑔) → 𝐿 = 𝑔)
1612, 13, 14, 15syl3anc 1369 . . . . . . 7 ((((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) ∧ (𝑔 ∈ (Fil‘𝑌) ∧ (𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))) → 𝐿 = 𝑔)
1716fveq2d 6760 . . . . . 6 ((((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) ∧ (𝑔 ∈ (Fil‘𝑌) ∧ (𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))) → ((𝑋 FilMap 𝐹)‘𝐿) = ((𝑋 FilMap 𝐹)‘𝑔))
18 simprrr 778 . . . . . 6 ((((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) ∧ (𝑔 ∈ (Fil‘𝑌) ∧ (𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))) → 𝑓 = ((𝑋 FilMap 𝐹)‘𝑔))
1917, 18eqtr4d 2781 . . . . 5 ((((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) ∧ (𝑔 ∈ (Fil‘𝑌) ∧ (𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))) → ((𝑋 FilMap 𝐹)‘𝐿) = 𝑓)
2011, 19rexlimddv 3219 . . . 4 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) → ((𝑋 FilMap 𝐹)‘𝐿) = 𝑓)
2120expr 456 . . 3 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑋)) → (((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓 → ((𝑋 FilMap 𝐹)‘𝐿) = 𝑓))
2221ralrimiva 3107 . 2 ((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) → ∀𝑓 ∈ (Fil‘𝑋)(((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓 → ((𝑋 FilMap 𝐹)‘𝐿) = 𝑓))
23 isufil2 22967 . 2 (((𝑋 FilMap 𝐹)‘𝐿) ∈ (UFil‘𝑋) ↔ (((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓 → ((𝑋 FilMap 𝐹)‘𝐿) = 𝑓)))
245, 22, 23sylanbrc 582 1 ((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (UFil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wss 3883  wf 6414  cfv 6418  (class class class)co 7255  fBascfbas 20498  Filcfil 22904  UFilcufil 22958   FilMap cfm 22992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1o 8267  df-er 8456  df-en 8692  df-fin 8695  df-fi 9100  df-fbas 20507  df-fg 20508  df-fil 22905  df-ufil 22960  df-fm 22997
This theorem is referenced by:  ufldom  23021  uffcfflf  23098
  Copyright terms: Public domain W3C validator