MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmufil Structured version   Visualization version   GIF version

Theorem fmufil 22265
Description: An image filter of an ultrafilter is an ultrafilter. (Contributed by Jeff Hankins, 11-Dec-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
fmufil ((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (UFil‘𝑋))

Proof of Theorem fmufil
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ufilfil 22210 . . . 4 (𝐿 ∈ (UFil‘𝑌) → 𝐿 ∈ (Fil‘𝑌))
2 filfbas 22154 . . . 4 (𝐿 ∈ (Fil‘𝑌) → 𝐿 ∈ (fBas‘𝑌))
31, 2syl 17 . . 3 (𝐿 ∈ (UFil‘𝑌) → 𝐿 ∈ (fBas‘𝑌))
4 fmfil 22250 . . 3 ((𝑋𝐴𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋))
53, 4syl3an2 1144 . 2 ((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋))
6 simpl2 1172 . . . . . . 7 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) → 𝐿 ∈ (UFil‘𝑌))
76, 1, 23syl 18 . . . . . 6 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) → 𝐿 ∈ (fBas‘𝑌))
8 simprl 758 . . . . . 6 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) → 𝑓 ∈ (Fil‘𝑋))
9 simpl3 1173 . . . . . 6 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) → 𝐹:𝑌𝑋)
10 simprr 760 . . . . . 6 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) → ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)
117, 8, 9, 10fmfnfm 22264 . . . . 5 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) → ∃𝑔 ∈ (Fil‘𝑌)(𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))
126adantr 473 . . . . . . . 8 ((((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) ∧ (𝑔 ∈ (Fil‘𝑌) ∧ (𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))) → 𝐿 ∈ (UFil‘𝑌))
13 simprl 758 . . . . . . . 8 ((((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) ∧ (𝑔 ∈ (Fil‘𝑌) ∧ (𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))) → 𝑔 ∈ (Fil‘𝑌))
14 simprrl 768 . . . . . . . 8 ((((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) ∧ (𝑔 ∈ (Fil‘𝑌) ∧ (𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))) → 𝐿𝑔)
15 ufilmax 22213 . . . . . . . 8 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝑔 ∈ (Fil‘𝑌) ∧ 𝐿𝑔) → 𝐿 = 𝑔)
1612, 13, 14, 15syl3anc 1351 . . . . . . 7 ((((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) ∧ (𝑔 ∈ (Fil‘𝑌) ∧ (𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))) → 𝐿 = 𝑔)
1716fveq2d 6497 . . . . . 6 ((((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) ∧ (𝑔 ∈ (Fil‘𝑌) ∧ (𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))) → ((𝑋 FilMap 𝐹)‘𝐿) = ((𝑋 FilMap 𝐹)‘𝑔))
18 simprrr 769 . . . . . 6 ((((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) ∧ (𝑔 ∈ (Fil‘𝑌) ∧ (𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))) → 𝑓 = ((𝑋 FilMap 𝐹)‘𝑔))
1917, 18eqtr4d 2811 . . . . 5 ((((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) ∧ (𝑔 ∈ (Fil‘𝑌) ∧ (𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))) → ((𝑋 FilMap 𝐹)‘𝐿) = 𝑓)
2011, 19rexlimddv 3230 . . . 4 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) → ((𝑋 FilMap 𝐹)‘𝐿) = 𝑓)
2120expr 449 . . 3 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑋)) → (((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓 → ((𝑋 FilMap 𝐹)‘𝐿) = 𝑓))
2221ralrimiva 3126 . 2 ((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) → ∀𝑓 ∈ (Fil‘𝑋)(((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓 → ((𝑋 FilMap 𝐹)‘𝐿) = 𝑓))
23 isufil2 22214 . 2 (((𝑋 FilMap 𝐹)‘𝐿) ∈ (UFil‘𝑋) ↔ (((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓 → ((𝑋 FilMap 𝐹)‘𝐿) = 𝑓)))
245, 22, 23sylanbrc 575 1 ((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (UFil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2050  wral 3082  wss 3823  wf 6178  cfv 6182  (class class class)co 6970  fBascfbas 20229  Filcfil 22151  UFilcufil 22205   FilMap cfm 22239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-1o 7899  df-oadd 7903  df-er 8083  df-en 8301  df-fin 8304  df-fi 8664  df-fbas 20238  df-fg 20239  df-fil 22152  df-ufil 22207  df-fm 22244
This theorem is referenced by:  ufldom  22268  uffcfflf  22345
  Copyright terms: Public domain W3C validator