MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmufil Structured version   Visualization version   GIF version

Theorem fmufil 23853
Description: An image filter of an ultrafilter is an ultrafilter. (Contributed by Jeff Hankins, 11-Dec-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
fmufil ((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (UFil‘𝑋))

Proof of Theorem fmufil
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ufilfil 23798 . . . 4 (𝐿 ∈ (UFil‘𝑌) → 𝐿 ∈ (Fil‘𝑌))
2 filfbas 23742 . . . 4 (𝐿 ∈ (Fil‘𝑌) → 𝐿 ∈ (fBas‘𝑌))
31, 2syl 17 . . 3 (𝐿 ∈ (UFil‘𝑌) → 𝐿 ∈ (fBas‘𝑌))
4 fmfil 23838 . . 3 ((𝑋𝐴𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋))
53, 4syl3an2 1164 . 2 ((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋))
6 simpl2 1193 . . . . . . 7 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) → 𝐿 ∈ (UFil‘𝑌))
76, 1, 23syl 18 . . . . . 6 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) → 𝐿 ∈ (fBas‘𝑌))
8 simprl 770 . . . . . 6 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) → 𝑓 ∈ (Fil‘𝑋))
9 simpl3 1194 . . . . . 6 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) → 𝐹:𝑌𝑋)
10 simprr 772 . . . . . 6 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) → ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)
117, 8, 9, 10fmfnfm 23852 . . . . 5 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) → ∃𝑔 ∈ (Fil‘𝑌)(𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))
126adantr 480 . . . . . . . 8 ((((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) ∧ (𝑔 ∈ (Fil‘𝑌) ∧ (𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))) → 𝐿 ∈ (UFil‘𝑌))
13 simprl 770 . . . . . . . 8 ((((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) ∧ (𝑔 ∈ (Fil‘𝑌) ∧ (𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))) → 𝑔 ∈ (Fil‘𝑌))
14 simprrl 780 . . . . . . . 8 ((((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) ∧ (𝑔 ∈ (Fil‘𝑌) ∧ (𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))) → 𝐿𝑔)
15 ufilmax 23801 . . . . . . . 8 ((𝐿 ∈ (UFil‘𝑌) ∧ 𝑔 ∈ (Fil‘𝑌) ∧ 𝐿𝑔) → 𝐿 = 𝑔)
1612, 13, 14, 15syl3anc 1373 . . . . . . 7 ((((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) ∧ (𝑔 ∈ (Fil‘𝑌) ∧ (𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))) → 𝐿 = 𝑔)
1716fveq2d 6865 . . . . . 6 ((((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) ∧ (𝑔 ∈ (Fil‘𝑌) ∧ (𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))) → ((𝑋 FilMap 𝐹)‘𝐿) = ((𝑋 FilMap 𝐹)‘𝑔))
18 simprrr 781 . . . . . 6 ((((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) ∧ (𝑔 ∈ (Fil‘𝑌) ∧ (𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))) → 𝑓 = ((𝑋 FilMap 𝐹)‘𝑔))
1917, 18eqtr4d 2768 . . . . 5 ((((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) ∧ (𝑔 ∈ (Fil‘𝑌) ∧ (𝐿𝑔𝑓 = ((𝑋 FilMap 𝐹)‘𝑔)))) → ((𝑋 FilMap 𝐹)‘𝐿) = 𝑓)
2011, 19rexlimddv 3141 . . . 4 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓)) → ((𝑋 FilMap 𝐹)‘𝐿) = 𝑓)
2120expr 456 . . 3 (((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑓 ∈ (Fil‘𝑋)) → (((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓 → ((𝑋 FilMap 𝐹)‘𝐿) = 𝑓))
2221ralrimiva 3126 . 2 ((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) → ∀𝑓 ∈ (Fil‘𝑋)(((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓 → ((𝑋 FilMap 𝐹)‘𝐿) = 𝑓))
23 isufil2 23802 . 2 (((𝑋 FilMap 𝐹)‘𝐿) ∈ (UFil‘𝑋) ↔ (((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(((𝑋 FilMap 𝐹)‘𝐿) ⊆ 𝑓 → ((𝑋 FilMap 𝐹)‘𝐿) = 𝑓)))
245, 22, 23sylanbrc 583 1 ((𝑋𝐴𝐿 ∈ (UFil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (UFil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wss 3917  wf 6510  cfv 6514  (class class class)co 7390  fBascfbas 21259  Filcfil 23739  UFilcufil 23793   FilMap cfm 23827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1o 8437  df-2o 8438  df-en 8922  df-fin 8925  df-fi 9369  df-fbas 21268  df-fg 21269  df-fil 23740  df-ufil 23795  df-fm 23832
This theorem is referenced by:  ufldom  23856  uffcfflf  23933
  Copyright terms: Public domain W3C validator