Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > peano2b | Structured version Visualization version GIF version |
Description: A class belongs to omega iff its successor does. (Contributed by NM, 3-Dec-1995.) |
Ref | Expression |
---|---|
peano2b | ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limom 7703 | . 2 ⊢ Lim ω | |
2 | limsuc 7671 | . 2 ⊢ (Lim ω → (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2108 Lim wlim 6252 suc csuc 6253 ωcom 7687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-om 7688 |
This theorem is referenced by: nnsuc 7705 peano2 7711 peano5 7714 peano5OLD 7715 frsuc 8238 frsucmptn 8240 nnaordi 8411 nnmsucr 8418 omsmolem 8447 php 8897 php4 8900 unblem1 8996 isfinite2 9002 inf0 9309 inf3lem1 9316 inf3lem5 9320 cantnfp1lem3 9368 cantnflem1 9377 itunisuc 10106 ituniiun 10109 indpi 10594 rdgeqoa 35468 |
Copyright terms: Public domain | W3C validator |