Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > peano2b | Structured version Visualization version GIF version |
Description: A class belongs to omega iff its successor does. (Contributed by NM, 3-Dec-1995.) |
Ref | Expression |
---|---|
peano2b | ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limom 7796 | . 2 ⊢ Lim ω | |
2 | limsuc 7763 | . 2 ⊢ (Lim ω → (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2105 Lim wlim 6303 suc csuc 6304 ωcom 7780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-tr 5210 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-om 7781 |
This theorem is referenced by: nnsuc 7798 peano2 7805 peano5 7808 peano5OLD 7809 frsuc 8338 frsucmptn 8340 nnaordi 8520 nnmsucr 8527 omsmolem 8558 php 9075 php4 9078 phpOLD 9087 unblem1 9160 isfinite2 9166 inf0 9478 inf3lem1 9485 inf3lem5 9489 cantnfp1lem3 9537 cantnflem1 9546 itunisuc 10276 ituniiun 10279 indpi 10764 rdgeqoa 35646 |
Copyright terms: Public domain | W3C validator |