MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano2b Structured version   Visualization version   GIF version

Theorem peano2b 7904
Description: A class belongs to omega iff its successor does. (Contributed by NM, 3-Dec-1995.)
Assertion
Ref Expression
peano2b (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)

Proof of Theorem peano2b
StepHypRef Expression
1 limom 7903 . 2 Lim ω
2 limsuc 7870 . 2 (Lim ω → (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω))
31, 2ax-mp 5 1 (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108  Lim wlim 6385  suc csuc 6386  ωcom 7887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-tr 5260  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-om 7888
This theorem is referenced by:  nnsuc  7905  peano2  7912  peano5  7915  frsuc  8477  frsucmptn  8479  nnaordi  8656  nnmsucr  8663  omsmolem  8695  php  9247  php4  9250  phpOLD  9259  unblem1  9328  isfinite2  9334  inf0  9661  inf3lem1  9668  inf3lem5  9672  cantnfp1lem3  9720  cantnflem1  9729  itunisuc  10459  ituniiun  10462  indpi  10947  rdgeqoa  37371
  Copyright terms: Public domain W3C validator