![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > peano2b | Structured version Visualization version GIF version |
Description: A class belongs to omega iff its successor does. (Contributed by NM, 3-Dec-1995.) |
Ref | Expression |
---|---|
peano2b | ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limom 7892 | . 2 ⊢ Lim ω | |
2 | limsuc 7859 | . 2 ⊢ (Lim ω → (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2099 Lim wlim 6377 suc csuc 6378 ωcom 7876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-tr 5271 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-om 7877 |
This theorem is referenced by: nnsuc 7894 peano2 7902 peano5 7905 peano5OLD 7906 frsuc 8467 frsucmptn 8469 nnaordi 8648 nnmsucr 8655 omsmolem 8687 php 9244 php4 9247 phpOLD 9256 unblem1 9329 isfinite2 9335 inf0 9664 inf3lem1 9671 inf3lem5 9675 cantnfp1lem3 9723 cantnflem1 9732 itunisuc 10462 ituniiun 10465 indpi 10950 rdgeqoa 37077 |
Copyright terms: Public domain | W3C validator |