| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano2b | Structured version Visualization version GIF version | ||
| Description: A class belongs to omega iff its successor does. (Contributed by NM, 3-Dec-1995.) |
| Ref | Expression |
|---|---|
| peano2b | ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limom 7821 | . 2 ⊢ Lim ω | |
| 2 | limsuc 7788 | . 2 ⊢ (Lim ω → (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2113 Lim wlim 6315 suc csuc 6316 ωcom 7805 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-om 7806 |
| This theorem is referenced by: nnsuc 7823 peano2 7829 peano5 7832 frsuc 8365 frsucmptn 8367 nnaordi 8542 nnmsucr 8549 omsmolem 8581 php 9127 php4 9130 unblem1 9187 isfinite2 9193 inf0 9522 inf3lem1 9529 inf3lem5 9533 cantnfp1lem3 9581 cantnflem1 9590 itunisuc 10321 ituniiun 10324 indpi 10809 constrllcllem 33837 constrlccllem 33838 constrcccllem 33839 rdgeqoa 37487 |
| Copyright terms: Public domain | W3C validator |