| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano2b | Structured version Visualization version GIF version | ||
| Description: A class belongs to omega iff its successor does. (Contributed by NM, 3-Dec-1995.) |
| Ref | Expression |
|---|---|
| peano2b | ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limom 7838 | . 2 ⊢ Lim ω | |
| 2 | limsuc 7805 | . 2 ⊢ (Lim ω → (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Lim wlim 6321 suc csuc 6322 ωcom 7822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-om 7823 |
| This theorem is referenced by: nnsuc 7840 peano2 7846 peano5 7849 frsuc 8382 frsucmptn 8384 nnaordi 8559 nnmsucr 8566 omsmolem 8598 php 9148 php4 9151 unblem1 9215 isfinite2 9221 inf0 9550 inf3lem1 9557 inf3lem5 9561 cantnfp1lem3 9609 cantnflem1 9618 itunisuc 10348 ituniiun 10351 indpi 10836 constrllcllem 33715 constrlccllem 33716 constrcccllem 33717 rdgeqoa 37331 |
| Copyright terms: Public domain | W3C validator |