MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskun Structured version   Visualization version   GIF version

Theorem tskun 9943
Description: The union of two elements of a transitive Tarski class is in the set. (Contributed by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tskun (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐵𝑇) → (𝐴𝐵) ∈ 𝑇)

Proof of Theorem tskun
StepHypRef Expression
1 uniprg 4685 . . 3 ((𝐴𝑇𝐵𝑇) → {𝐴, 𝐵} = (𝐴𝐵))
213adant1 1121 . 2 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐵𝑇) → {𝐴, 𝐵} = (𝐴𝐵))
3 simp1l 1211 . . 3 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐵𝑇) → 𝑇 ∈ Tarski)
4 simp1r 1212 . . 3 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐵𝑇) → Tr 𝑇)
5 tskpr 9927 . . . 4 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝑇) → {𝐴, 𝐵} ∈ 𝑇)
653adant1r 1180 . . 3 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐵𝑇) → {𝐴, 𝐵} ∈ 𝑇)
7 tskuni 9940 . . 3 ((𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ {𝐴, 𝐵} ∈ 𝑇) → {𝐴, 𝐵} ∈ 𝑇)
83, 4, 6, 7syl3anc 1439 . 2 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐵𝑇) → {𝐴, 𝐵} ∈ 𝑇)
92, 8eqeltrrd 2859 1 (((𝑇 ∈ Tarski ∧ Tr 𝑇) ∧ 𝐴𝑇𝐵𝑇) → (𝐴𝐵) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2106  cun 3789  {cpr 4399   cuni 4671  Tr wtr 4987  Tarskictsk 9905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-ac2 9620
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-smo 7726  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-oi 8704  df-har 8752  df-r1 8924  df-card 9098  df-aleph 9099  df-cf 9100  df-acn 9101  df-ac 9272  df-wina 9841  df-ina 9842  df-tsk 9906
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator