MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madeoldsuc Structured version   Visualization version   GIF version

Theorem madeoldsuc 27772
Description: The made set is the old set of its successor. (Contributed by Scott Fenton, 8-Aug-2024.)
Assertion
Ref Expression
madeoldsuc (𝐴 ∈ On → ( M ‘𝐴) = ( O ‘suc 𝐴))

Proof of Theorem madeoldsuc
StepHypRef Expression
1 df-suc 6326 . . . . . . . 8 suc 𝐴 = (𝐴 ∪ {𝐴})
21imaeq2i 6018 . . . . . . 7 ( M “ suc 𝐴) = ( M “ (𝐴 ∪ {𝐴}))
3 imaundi 6110 . . . . . . 7 ( M “ (𝐴 ∪ {𝐴})) = (( M “ 𝐴) ∪ ( M “ {𝐴}))
42, 3eqtri 2752 . . . . . 6 ( M “ suc 𝐴) = (( M “ 𝐴) ∪ ( M “ {𝐴}))
54unieqi 4879 . . . . 5 ( M “ suc 𝐴) = (( M “ 𝐴) ∪ ( M “ {𝐴}))
6 uniun 4890 . . . . 5 (( M “ 𝐴) ∪ ( M “ {𝐴})) = ( ( M “ 𝐴) ∪ ( M “ {𝐴}))
75, 6eqtri 2752 . . . 4 ( M “ suc 𝐴) = ( ( M “ 𝐴) ∪ ( M “ {𝐴}))
87a1i 11 . . 3 (𝐴 ∈ On → ( M “ suc 𝐴) = ( ( M “ 𝐴) ∪ ( M “ {𝐴})))
9 oldval 27738 . . . . 5 (𝐴 ∈ On → ( O ‘𝐴) = ( M “ 𝐴))
109eqcomd 2735 . . . 4 (𝐴 ∈ On → ( M “ 𝐴) = ( O ‘𝐴))
11 madef 27740 . . . . . . . 8 M :On⟶𝒫 No
12 ffn 6670 . . . . . . . 8 ( M :On⟶𝒫 No → M Fn On)
1311, 12ax-mp 5 . . . . . . 7 M Fn On
14 fnsnfv 6922 . . . . . . . 8 (( M Fn On ∧ 𝐴 ∈ On) → {( M ‘𝐴)} = ( M “ {𝐴}))
1514eqcomd 2735 . . . . . . 7 (( M Fn On ∧ 𝐴 ∈ On) → ( M “ {𝐴}) = {( M ‘𝐴)})
1613, 15mpan 690 . . . . . 6 (𝐴 ∈ On → ( M “ {𝐴}) = {( M ‘𝐴)})
1716unieqd 4880 . . . . 5 (𝐴 ∈ On → ( M “ {𝐴}) = {( M ‘𝐴)})
18 fvex 6853 . . . . . 6 ( M ‘𝐴) ∈ V
1918unisn 4886 . . . . 5 {( M ‘𝐴)} = ( M ‘𝐴)
2017, 19eqtrdi 2780 . . . 4 (𝐴 ∈ On → ( M “ {𝐴}) = ( M ‘𝐴))
2110, 20uneq12d 4128 . . 3 (𝐴 ∈ On → ( ( M “ 𝐴) ∪ ( M “ {𝐴})) = (( O ‘𝐴) ∪ ( M ‘𝐴)))
22 oldssmade 27765 . . . . 5 ( O ‘𝐴) ⊆ ( M ‘𝐴)
2322a1i 11 . . . 4 (𝐴 ∈ On → ( O ‘𝐴) ⊆ ( M ‘𝐴))
24 ssequn1 4145 . . . 4 (( O ‘𝐴) ⊆ ( M ‘𝐴) ↔ (( O ‘𝐴) ∪ ( M ‘𝐴)) = ( M ‘𝐴))
2523, 24sylib 218 . . 3 (𝐴 ∈ On → (( O ‘𝐴) ∪ ( M ‘𝐴)) = ( M ‘𝐴))
268, 21, 253eqtrrd 2769 . 2 (𝐴 ∈ On → ( M ‘𝐴) = ( M “ suc 𝐴))
27 onsuc 7767 . . 3 (𝐴 ∈ On → suc 𝐴 ∈ On)
28 oldval 27738 . . 3 (suc 𝐴 ∈ On → ( O ‘suc 𝐴) = ( M “ suc 𝐴))
2927, 28syl 17 . 2 (𝐴 ∈ On → ( O ‘suc 𝐴) = ( M “ suc 𝐴))
3026, 29eqtr4d 2767 1 (𝐴 ∈ On → ( M ‘𝐴) = ( O ‘suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cun 3909  wss 3911  𝒫 cpw 4559  {csn 4585   cuni 4867  cima 5634  Oncon0 6320  suc csuc 6322   Fn wfn 6494  wf 6495  cfv 6499   No csur 27527   M cmade 27726   O cold 27727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-1o 8411  df-2o 8412  df-no 27530  df-slt 27531  df-bday 27532  df-sslt 27669  df-scut 27671  df-made 27731  df-old 27732
This theorem is referenced by:  oldsuc  27773  oldlim  27774
  Copyright terms: Public domain W3C validator