Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  madeoldsuc Structured version   Visualization version   GIF version

Theorem madeoldsuc 34067
Description: The made set is the old set of its successor. (Contributed by Scott Fenton, 8-Aug-2024.)
Assertion
Ref Expression
madeoldsuc (𝐴 ∈ On → ( M ‘𝐴) = ( O ‘suc 𝐴))

Proof of Theorem madeoldsuc
StepHypRef Expression
1 df-suc 6272 . . . . . . . 8 suc 𝐴 = (𝐴 ∪ {𝐴})
21imaeq2i 5967 . . . . . . 7 ( M “ suc 𝐴) = ( M “ (𝐴 ∪ {𝐴}))
3 imaundi 6053 . . . . . . 7 ( M “ (𝐴 ∪ {𝐴})) = (( M “ 𝐴) ∪ ( M “ {𝐴}))
42, 3eqtri 2766 . . . . . 6 ( M “ suc 𝐴) = (( M “ 𝐴) ∪ ( M “ {𝐴}))
54unieqi 4852 . . . . 5 ( M “ suc 𝐴) = (( M “ 𝐴) ∪ ( M “ {𝐴}))
6 uniun 4864 . . . . 5 (( M “ 𝐴) ∪ ( M “ {𝐴})) = ( ( M “ 𝐴) ∪ ( M “ {𝐴}))
75, 6eqtri 2766 . . . 4 ( M “ suc 𝐴) = ( ( M “ 𝐴) ∪ ( M “ {𝐴}))
87a1i 11 . . 3 (𝐴 ∈ On → ( M “ suc 𝐴) = ( ( M “ 𝐴) ∪ ( M “ {𝐴})))
9 oldval 34038 . . . . 5 (𝐴 ∈ On → ( O ‘𝐴) = ( M “ 𝐴))
109eqcomd 2744 . . . 4 (𝐴 ∈ On → ( M “ 𝐴) = ( O ‘𝐴))
11 madef 34040 . . . . . . . 8 M :On⟶𝒫 No
12 ffn 6600 . . . . . . . 8 ( M :On⟶𝒫 No → M Fn On)
1311, 12ax-mp 5 . . . . . . 7 M Fn On
14 fnsnfv 6847 . . . . . . . 8 (( M Fn On ∧ 𝐴 ∈ On) → {( M ‘𝐴)} = ( M “ {𝐴}))
1514eqcomd 2744 . . . . . . 7 (( M Fn On ∧ 𝐴 ∈ On) → ( M “ {𝐴}) = {( M ‘𝐴)})
1613, 15mpan 687 . . . . . 6 (𝐴 ∈ On → ( M “ {𝐴}) = {( M ‘𝐴)})
1716unieqd 4853 . . . . 5 (𝐴 ∈ On → ( M “ {𝐴}) = {( M ‘𝐴)})
18 fvex 6787 . . . . . 6 ( M ‘𝐴) ∈ V
1918unisn 4861 . . . . 5 {( M ‘𝐴)} = ( M ‘𝐴)
2017, 19eqtrdi 2794 . . . 4 (𝐴 ∈ On → ( M “ {𝐴}) = ( M ‘𝐴))
2110, 20uneq12d 4098 . . 3 (𝐴 ∈ On → ( ( M “ 𝐴) ∪ ( M “ {𝐴})) = (( O ‘𝐴) ∪ ( M ‘𝐴)))
22 oldssmade 34060 . . . . 5 ( O ‘𝐴) ⊆ ( M ‘𝐴)
2322a1i 11 . . . 4 (𝐴 ∈ On → ( O ‘𝐴) ⊆ ( M ‘𝐴))
24 ssequn1 4114 . . . 4 (( O ‘𝐴) ⊆ ( M ‘𝐴) ↔ (( O ‘𝐴) ∪ ( M ‘𝐴)) = ( M ‘𝐴))
2523, 24sylib 217 . . 3 (𝐴 ∈ On → (( O ‘𝐴) ∪ ( M ‘𝐴)) = ( M ‘𝐴))
268, 21, 253eqtrrd 2783 . 2 (𝐴 ∈ On → ( M ‘𝐴) = ( M “ suc 𝐴))
27 suceloni 7659 . . 3 (𝐴 ∈ On → suc 𝐴 ∈ On)
28 oldval 34038 . . 3 (suc 𝐴 ∈ On → ( O ‘suc 𝐴) = ( M “ suc 𝐴))
2927, 28syl 17 . 2 (𝐴 ∈ On → ( O ‘suc 𝐴) = ( M “ suc 𝐴))
3026, 29eqtr4d 2781 1 (𝐴 ∈ On → ( M ‘𝐴) = ( O ‘suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cun 3885  wss 3887  𝒫 cpw 4533  {csn 4561   cuni 4839  cima 5592  Oncon0 6266  suc csuc 6268   Fn wfn 6428  wf 6429  cfv 6433   No csur 33843   M cmade 34026   O cold 34027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-1o 8297  df-2o 8298  df-no 33846  df-slt 33847  df-bday 33848  df-sslt 33976  df-scut 33978  df-made 34031  df-old 34032
This theorem is referenced by:  oldsuc  34068  oldlim  34069
  Copyright terms: Public domain W3C validator