Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > madeoldsuc | Structured version Visualization version GIF version |
Description: The made set is the old set of its successor. (Contributed by Scott Fenton, 8-Aug-2024.) |
Ref | Expression |
---|---|
madeoldsuc | ⊢ (𝐴 ∈ On → ( M ‘𝐴) = ( O ‘suc 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 6175 | . . . . . . . 8 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
2 | 1 | imaeq2i 5899 | . . . . . . 7 ⊢ ( M “ suc 𝐴) = ( M “ (𝐴 ∪ {𝐴})) |
3 | imaundi 5980 | . . . . . . 7 ⊢ ( M “ (𝐴 ∪ {𝐴})) = (( M “ 𝐴) ∪ ( M “ {𝐴})) | |
4 | 2, 3 | eqtri 2781 | . . . . . 6 ⊢ ( M “ suc 𝐴) = (( M “ 𝐴) ∪ ( M “ {𝐴})) |
5 | 4 | unieqi 4811 | . . . . 5 ⊢ ∪ ( M “ suc 𝐴) = ∪ (( M “ 𝐴) ∪ ( M “ {𝐴})) |
6 | uniun 4823 | . . . . 5 ⊢ ∪ (( M “ 𝐴) ∪ ( M “ {𝐴})) = (∪ ( M “ 𝐴) ∪ ∪ ( M “ {𝐴})) | |
7 | 5, 6 | eqtri 2781 | . . . 4 ⊢ ∪ ( M “ suc 𝐴) = (∪ ( M “ 𝐴) ∪ ∪ ( M “ {𝐴})) |
8 | 7 | a1i 11 | . . 3 ⊢ (𝐴 ∈ On → ∪ ( M “ suc 𝐴) = (∪ ( M “ 𝐴) ∪ ∪ ( M “ {𝐴}))) |
9 | oldval 33598 | . . . . 5 ⊢ (𝐴 ∈ On → ( O ‘𝐴) = ∪ ( M “ 𝐴)) | |
10 | 9 | eqcomd 2764 | . . . 4 ⊢ (𝐴 ∈ On → ∪ ( M “ 𝐴) = ( O ‘𝐴)) |
11 | madef 33600 | . . . . . . . 8 ⊢ M :On⟶𝒫 No | |
12 | ffn 6498 | . . . . . . . 8 ⊢ ( M :On⟶𝒫 No → M Fn On) | |
13 | 11, 12 | ax-mp 5 | . . . . . . 7 ⊢ M Fn On |
14 | fnsnfv 6731 | . . . . . . . 8 ⊢ (( M Fn On ∧ 𝐴 ∈ On) → {( M ‘𝐴)} = ( M “ {𝐴})) | |
15 | 14 | eqcomd 2764 | . . . . . . 7 ⊢ (( M Fn On ∧ 𝐴 ∈ On) → ( M “ {𝐴}) = {( M ‘𝐴)}) |
16 | 13, 15 | mpan 689 | . . . . . 6 ⊢ (𝐴 ∈ On → ( M “ {𝐴}) = {( M ‘𝐴)}) |
17 | 16 | unieqd 4812 | . . . . 5 ⊢ (𝐴 ∈ On → ∪ ( M “ {𝐴}) = ∪ {( M ‘𝐴)}) |
18 | fvex 6671 | . . . . . 6 ⊢ ( M ‘𝐴) ∈ V | |
19 | 18 | unisn 4820 | . . . . 5 ⊢ ∪ {( M ‘𝐴)} = ( M ‘𝐴) |
20 | 17, 19 | eqtrdi 2809 | . . . 4 ⊢ (𝐴 ∈ On → ∪ ( M “ {𝐴}) = ( M ‘𝐴)) |
21 | 10, 20 | uneq12d 4069 | . . 3 ⊢ (𝐴 ∈ On → (∪ ( M “ 𝐴) ∪ ∪ ( M “ {𝐴})) = (( O ‘𝐴) ∪ ( M ‘𝐴))) |
22 | oldssmade 33617 | . . . 4 ⊢ (𝐴 ∈ On → ( O ‘𝐴) ⊆ ( M ‘𝐴)) | |
23 | ssequn1 4085 | . . . 4 ⊢ (( O ‘𝐴) ⊆ ( M ‘𝐴) ↔ (( O ‘𝐴) ∪ ( M ‘𝐴)) = ( M ‘𝐴)) | |
24 | 22, 23 | sylib 221 | . . 3 ⊢ (𝐴 ∈ On → (( O ‘𝐴) ∪ ( M ‘𝐴)) = ( M ‘𝐴)) |
25 | 8, 21, 24 | 3eqtrrd 2798 | . 2 ⊢ (𝐴 ∈ On → ( M ‘𝐴) = ∪ ( M “ suc 𝐴)) |
26 | suceloni 7527 | . . 3 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
27 | oldval 33598 | . . 3 ⊢ (suc 𝐴 ∈ On → ( O ‘suc 𝐴) = ∪ ( M “ suc 𝐴)) | |
28 | 26, 27 | syl 17 | . 2 ⊢ (𝐴 ∈ On → ( O ‘suc 𝐴) = ∪ ( M “ suc 𝐴)) |
29 | 25, 28 | eqtr4d 2796 | 1 ⊢ (𝐴 ∈ On → ( M ‘𝐴) = ( O ‘suc 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∪ cun 3856 ⊆ wss 3858 𝒫 cpw 4494 {csn 4522 ∪ cuni 4798 “ cima 5527 Oncon0 6169 suc csuc 6171 Fn wfn 6330 ⟶wf 6331 ‘cfv 6335 No csur 33408 M cmade 33586 O cold 33587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-wrecs 7957 df-recs 8018 df-1o 8112 df-2o 8113 df-no 33411 df-slt 33412 df-bday 33413 df-sslt 33541 df-scut 33543 df-made 33591 df-old 33592 |
This theorem is referenced by: oldsuc 33625 oldlim 33626 |
Copyright terms: Public domain | W3C validator |