Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > madeoldsuc | Structured version Visualization version GIF version |
Description: The made set is the old set of its successor. (Contributed by Scott Fenton, 8-Aug-2024.) |
Ref | Expression |
---|---|
madeoldsuc | ⊢ (𝐴 ∈ On → ( M ‘𝐴) = ( O ‘suc 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 6272 | . . . . . . . 8 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
2 | 1 | imaeq2i 5967 | . . . . . . 7 ⊢ ( M “ suc 𝐴) = ( M “ (𝐴 ∪ {𝐴})) |
3 | imaundi 6053 | . . . . . . 7 ⊢ ( M “ (𝐴 ∪ {𝐴})) = (( M “ 𝐴) ∪ ( M “ {𝐴})) | |
4 | 2, 3 | eqtri 2766 | . . . . . 6 ⊢ ( M “ suc 𝐴) = (( M “ 𝐴) ∪ ( M “ {𝐴})) |
5 | 4 | unieqi 4852 | . . . . 5 ⊢ ∪ ( M “ suc 𝐴) = ∪ (( M “ 𝐴) ∪ ( M “ {𝐴})) |
6 | uniun 4864 | . . . . 5 ⊢ ∪ (( M “ 𝐴) ∪ ( M “ {𝐴})) = (∪ ( M “ 𝐴) ∪ ∪ ( M “ {𝐴})) | |
7 | 5, 6 | eqtri 2766 | . . . 4 ⊢ ∪ ( M “ suc 𝐴) = (∪ ( M “ 𝐴) ∪ ∪ ( M “ {𝐴})) |
8 | 7 | a1i 11 | . . 3 ⊢ (𝐴 ∈ On → ∪ ( M “ suc 𝐴) = (∪ ( M “ 𝐴) ∪ ∪ ( M “ {𝐴}))) |
9 | oldval 34038 | . . . . 5 ⊢ (𝐴 ∈ On → ( O ‘𝐴) = ∪ ( M “ 𝐴)) | |
10 | 9 | eqcomd 2744 | . . . 4 ⊢ (𝐴 ∈ On → ∪ ( M “ 𝐴) = ( O ‘𝐴)) |
11 | madef 34040 | . . . . . . . 8 ⊢ M :On⟶𝒫 No | |
12 | ffn 6600 | . . . . . . . 8 ⊢ ( M :On⟶𝒫 No → M Fn On) | |
13 | 11, 12 | ax-mp 5 | . . . . . . 7 ⊢ M Fn On |
14 | fnsnfv 6847 | . . . . . . . 8 ⊢ (( M Fn On ∧ 𝐴 ∈ On) → {( M ‘𝐴)} = ( M “ {𝐴})) | |
15 | 14 | eqcomd 2744 | . . . . . . 7 ⊢ (( M Fn On ∧ 𝐴 ∈ On) → ( M “ {𝐴}) = {( M ‘𝐴)}) |
16 | 13, 15 | mpan 687 | . . . . . 6 ⊢ (𝐴 ∈ On → ( M “ {𝐴}) = {( M ‘𝐴)}) |
17 | 16 | unieqd 4853 | . . . . 5 ⊢ (𝐴 ∈ On → ∪ ( M “ {𝐴}) = ∪ {( M ‘𝐴)}) |
18 | fvex 6787 | . . . . . 6 ⊢ ( M ‘𝐴) ∈ V | |
19 | 18 | unisn 4861 | . . . . 5 ⊢ ∪ {( M ‘𝐴)} = ( M ‘𝐴) |
20 | 17, 19 | eqtrdi 2794 | . . . 4 ⊢ (𝐴 ∈ On → ∪ ( M “ {𝐴}) = ( M ‘𝐴)) |
21 | 10, 20 | uneq12d 4098 | . . 3 ⊢ (𝐴 ∈ On → (∪ ( M “ 𝐴) ∪ ∪ ( M “ {𝐴})) = (( O ‘𝐴) ∪ ( M ‘𝐴))) |
22 | oldssmade 34060 | . . . . 5 ⊢ ( O ‘𝐴) ⊆ ( M ‘𝐴) | |
23 | 22 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ On → ( O ‘𝐴) ⊆ ( M ‘𝐴)) |
24 | ssequn1 4114 | . . . 4 ⊢ (( O ‘𝐴) ⊆ ( M ‘𝐴) ↔ (( O ‘𝐴) ∪ ( M ‘𝐴)) = ( M ‘𝐴)) | |
25 | 23, 24 | sylib 217 | . . 3 ⊢ (𝐴 ∈ On → (( O ‘𝐴) ∪ ( M ‘𝐴)) = ( M ‘𝐴)) |
26 | 8, 21, 25 | 3eqtrrd 2783 | . 2 ⊢ (𝐴 ∈ On → ( M ‘𝐴) = ∪ ( M “ suc 𝐴)) |
27 | suceloni 7659 | . . 3 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
28 | oldval 34038 | . . 3 ⊢ (suc 𝐴 ∈ On → ( O ‘suc 𝐴) = ∪ ( M “ suc 𝐴)) | |
29 | 27, 28 | syl 17 | . 2 ⊢ (𝐴 ∈ On → ( O ‘suc 𝐴) = ∪ ( M “ suc 𝐴)) |
30 | 26, 29 | eqtr4d 2781 | 1 ⊢ (𝐴 ∈ On → ( M ‘𝐴) = ( O ‘suc 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∪ cun 3885 ⊆ wss 3887 𝒫 cpw 4533 {csn 4561 ∪ cuni 4839 “ cima 5592 Oncon0 6266 suc csuc 6268 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 No csur 33843 M cmade 34026 O cold 34027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-1o 8297 df-2o 8298 df-no 33846 df-slt 33847 df-bday 33848 df-sslt 33976 df-scut 33978 df-made 34031 df-old 34032 |
This theorem is referenced by: oldsuc 34068 oldlim 34069 |
Copyright terms: Public domain | W3C validator |