MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madeoldsuc Structured version   Visualization version   GIF version

Theorem madeoldsuc 27799
Description: The made set is the old set of its successor. (Contributed by Scott Fenton, 8-Aug-2024.)
Assertion
Ref Expression
madeoldsuc (𝐴 ∈ On → ( M ‘𝐴) = ( O ‘suc 𝐴))

Proof of Theorem madeoldsuc
StepHypRef Expression
1 df-suc 6313 . . . . . . . 8 suc 𝐴 = (𝐴 ∪ {𝐴})
21imaeq2i 6009 . . . . . . 7 ( M “ suc 𝐴) = ( M “ (𝐴 ∪ {𝐴}))
3 imaundi 6098 . . . . . . 7 ( M “ (𝐴 ∪ {𝐴})) = (( M “ 𝐴) ∪ ( M “ {𝐴}))
42, 3eqtri 2752 . . . . . 6 ( M “ suc 𝐴) = (( M “ 𝐴) ∪ ( M “ {𝐴}))
54unieqi 4870 . . . . 5 ( M “ suc 𝐴) = (( M “ 𝐴) ∪ ( M “ {𝐴}))
6 uniun 4881 . . . . 5 (( M “ 𝐴) ∪ ( M “ {𝐴})) = ( ( M “ 𝐴) ∪ ( M “ {𝐴}))
75, 6eqtri 2752 . . . 4 ( M “ suc 𝐴) = ( ( M “ 𝐴) ∪ ( M “ {𝐴}))
87a1i 11 . . 3 (𝐴 ∈ On → ( M “ suc 𝐴) = ( ( M “ 𝐴) ∪ ( M “ {𝐴})))
9 oldval 27764 . . . . 5 (𝐴 ∈ On → ( O ‘𝐴) = ( M “ 𝐴))
109eqcomd 2735 . . . 4 (𝐴 ∈ On → ( M “ 𝐴) = ( O ‘𝐴))
11 madef 27766 . . . . . . . 8 M :On⟶𝒫 No
12 ffn 6652 . . . . . . . 8 ( M :On⟶𝒫 No → M Fn On)
1311, 12ax-mp 5 . . . . . . 7 M Fn On
14 fnsnfv 6902 . . . . . . . 8 (( M Fn On ∧ 𝐴 ∈ On) → {( M ‘𝐴)} = ( M “ {𝐴}))
1514eqcomd 2735 . . . . . . 7 (( M Fn On ∧ 𝐴 ∈ On) → ( M “ {𝐴}) = {( M ‘𝐴)})
1613, 15mpan 690 . . . . . 6 (𝐴 ∈ On → ( M “ {𝐴}) = {( M ‘𝐴)})
1716unieqd 4871 . . . . 5 (𝐴 ∈ On → ( M “ {𝐴}) = {( M ‘𝐴)})
18 fvex 6835 . . . . . 6 ( M ‘𝐴) ∈ V
1918unisn 4877 . . . . 5 {( M ‘𝐴)} = ( M ‘𝐴)
2017, 19eqtrdi 2780 . . . 4 (𝐴 ∈ On → ( M “ {𝐴}) = ( M ‘𝐴))
2110, 20uneq12d 4120 . . 3 (𝐴 ∈ On → ( ( M “ 𝐴) ∪ ( M “ {𝐴})) = (( O ‘𝐴) ∪ ( M ‘𝐴)))
22 oldssmade 27791 . . . . 5 ( O ‘𝐴) ⊆ ( M ‘𝐴)
2322a1i 11 . . . 4 (𝐴 ∈ On → ( O ‘𝐴) ⊆ ( M ‘𝐴))
24 ssequn1 4137 . . . 4 (( O ‘𝐴) ⊆ ( M ‘𝐴) ↔ (( O ‘𝐴) ∪ ( M ‘𝐴)) = ( M ‘𝐴))
2523, 24sylib 218 . . 3 (𝐴 ∈ On → (( O ‘𝐴) ∪ ( M ‘𝐴)) = ( M ‘𝐴))
268, 21, 253eqtrrd 2769 . 2 (𝐴 ∈ On → ( M ‘𝐴) = ( M “ suc 𝐴))
27 onsuc 7746 . . 3 (𝐴 ∈ On → suc 𝐴 ∈ On)
28 oldval 27764 . . 3 (suc 𝐴 ∈ On → ( O ‘suc 𝐴) = ( M “ suc 𝐴))
2927, 28syl 17 . 2 (𝐴 ∈ On → ( O ‘suc 𝐴) = ( M “ suc 𝐴))
3026, 29eqtr4d 2767 1 (𝐴 ∈ On → ( M ‘𝐴) = ( O ‘suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cun 3901  wss 3903  𝒫 cpw 4551  {csn 4577   cuni 4858  cima 5622  Oncon0 6307  suc csuc 6309   Fn wfn 6477  wf 6478  cfv 6482   No csur 27549   M cmade 27752   O cold 27753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-1o 8388  df-2o 8389  df-no 27552  df-slt 27553  df-bday 27554  df-sslt 27692  df-scut 27694  df-made 27757  df-old 27758
This theorem is referenced by:  oldsuc  27800  oldlim  27801
  Copyright terms: Public domain W3C validator