![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > madeoldsuc | Structured version Visualization version GIF version |
Description: The made set is the old set of its successor. (Contributed by Scott Fenton, 8-Aug-2024.) |
Ref | Expression |
---|---|
madeoldsuc | ⊢ (𝐴 ∈ On → ( M ‘𝐴) = ( O ‘suc 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 6369 | . . . . . . . 8 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
2 | 1 | imaeq2i 6055 | . . . . . . 7 ⊢ ( M “ suc 𝐴) = ( M “ (𝐴 ∪ {𝐴})) |
3 | imaundi 6148 | . . . . . . 7 ⊢ ( M “ (𝐴 ∪ {𝐴})) = (( M “ 𝐴) ∪ ( M “ {𝐴})) | |
4 | 2, 3 | eqtri 2755 | . . . . . 6 ⊢ ( M “ suc 𝐴) = (( M “ 𝐴) ∪ ( M “ {𝐴})) |
5 | 4 | unieqi 4915 | . . . . 5 ⊢ ∪ ( M “ suc 𝐴) = ∪ (( M “ 𝐴) ∪ ( M “ {𝐴})) |
6 | uniun 4928 | . . . . 5 ⊢ ∪ (( M “ 𝐴) ∪ ( M “ {𝐴})) = (∪ ( M “ 𝐴) ∪ ∪ ( M “ {𝐴})) | |
7 | 5, 6 | eqtri 2755 | . . . 4 ⊢ ∪ ( M “ suc 𝐴) = (∪ ( M “ 𝐴) ∪ ∪ ( M “ {𝐴})) |
8 | 7 | a1i 11 | . . 3 ⊢ (𝐴 ∈ On → ∪ ( M “ suc 𝐴) = (∪ ( M “ 𝐴) ∪ ∪ ( M “ {𝐴}))) |
9 | oldval 27755 | . . . . 5 ⊢ (𝐴 ∈ On → ( O ‘𝐴) = ∪ ( M “ 𝐴)) | |
10 | 9 | eqcomd 2733 | . . . 4 ⊢ (𝐴 ∈ On → ∪ ( M “ 𝐴) = ( O ‘𝐴)) |
11 | madef 27757 | . . . . . . . 8 ⊢ M :On⟶𝒫 No | |
12 | ffn 6716 | . . . . . . . 8 ⊢ ( M :On⟶𝒫 No → M Fn On) | |
13 | 11, 12 | ax-mp 5 | . . . . . . 7 ⊢ M Fn On |
14 | fnsnfv 6971 | . . . . . . . 8 ⊢ (( M Fn On ∧ 𝐴 ∈ On) → {( M ‘𝐴)} = ( M “ {𝐴})) | |
15 | 14 | eqcomd 2733 | . . . . . . 7 ⊢ (( M Fn On ∧ 𝐴 ∈ On) → ( M “ {𝐴}) = {( M ‘𝐴)}) |
16 | 13, 15 | mpan 689 | . . . . . 6 ⊢ (𝐴 ∈ On → ( M “ {𝐴}) = {( M ‘𝐴)}) |
17 | 16 | unieqd 4916 | . . . . 5 ⊢ (𝐴 ∈ On → ∪ ( M “ {𝐴}) = ∪ {( M ‘𝐴)}) |
18 | fvex 6904 | . . . . . 6 ⊢ ( M ‘𝐴) ∈ V | |
19 | 18 | unisn 4924 | . . . . 5 ⊢ ∪ {( M ‘𝐴)} = ( M ‘𝐴) |
20 | 17, 19 | eqtrdi 2783 | . . . 4 ⊢ (𝐴 ∈ On → ∪ ( M “ {𝐴}) = ( M ‘𝐴)) |
21 | 10, 20 | uneq12d 4160 | . . 3 ⊢ (𝐴 ∈ On → (∪ ( M “ 𝐴) ∪ ∪ ( M “ {𝐴})) = (( O ‘𝐴) ∪ ( M ‘𝐴))) |
22 | oldssmade 27778 | . . . . 5 ⊢ ( O ‘𝐴) ⊆ ( M ‘𝐴) | |
23 | 22 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ On → ( O ‘𝐴) ⊆ ( M ‘𝐴)) |
24 | ssequn1 4176 | . . . 4 ⊢ (( O ‘𝐴) ⊆ ( M ‘𝐴) ↔ (( O ‘𝐴) ∪ ( M ‘𝐴)) = ( M ‘𝐴)) | |
25 | 23, 24 | sylib 217 | . . 3 ⊢ (𝐴 ∈ On → (( O ‘𝐴) ∪ ( M ‘𝐴)) = ( M ‘𝐴)) |
26 | 8, 21, 25 | 3eqtrrd 2772 | . 2 ⊢ (𝐴 ∈ On → ( M ‘𝐴) = ∪ ( M “ suc 𝐴)) |
27 | onsuc 7806 | . . 3 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
28 | oldval 27755 | . . 3 ⊢ (suc 𝐴 ∈ On → ( O ‘suc 𝐴) = ∪ ( M “ suc 𝐴)) | |
29 | 27, 28 | syl 17 | . 2 ⊢ (𝐴 ∈ On → ( O ‘suc 𝐴) = ∪ ( M “ suc 𝐴)) |
30 | 26, 29 | eqtr4d 2770 | 1 ⊢ (𝐴 ∈ On → ( M ‘𝐴) = ( O ‘suc 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∪ cun 3942 ⊆ wss 3944 𝒫 cpw 4598 {csn 4624 ∪ cuni 4903 “ cima 5675 Oncon0 6363 suc csuc 6365 Fn wfn 6537 ⟶wf 6538 ‘cfv 6542 No csur 27547 M cmade 27743 O cold 27744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-1o 8478 df-2o 8479 df-no 27550 df-slt 27551 df-bday 27552 df-sslt 27688 df-scut 27690 df-made 27748 df-old 27749 |
This theorem is referenced by: oldsuc 27786 oldlim 27787 |
Copyright terms: Public domain | W3C validator |