| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > madeoldsuc | Structured version Visualization version GIF version | ||
| Description: The made set is the old set of its successor. (Contributed by Scott Fenton, 8-Aug-2024.) |
| Ref | Expression |
|---|---|
| madeoldsuc | ⊢ (𝐴 ∈ On → ( M ‘𝐴) = ( O ‘suc 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-suc 6338 | . . . . . . . 8 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 2 | 1 | imaeq2i 6029 | . . . . . . 7 ⊢ ( M “ suc 𝐴) = ( M “ (𝐴 ∪ {𝐴})) |
| 3 | imaundi 6122 | . . . . . . 7 ⊢ ( M “ (𝐴 ∪ {𝐴})) = (( M “ 𝐴) ∪ ( M “ {𝐴})) | |
| 4 | 2, 3 | eqtri 2752 | . . . . . 6 ⊢ ( M “ suc 𝐴) = (( M “ 𝐴) ∪ ( M “ {𝐴})) |
| 5 | 4 | unieqi 4883 | . . . . 5 ⊢ ∪ ( M “ suc 𝐴) = ∪ (( M “ 𝐴) ∪ ( M “ {𝐴})) |
| 6 | uniun 4894 | . . . . 5 ⊢ ∪ (( M “ 𝐴) ∪ ( M “ {𝐴})) = (∪ ( M “ 𝐴) ∪ ∪ ( M “ {𝐴})) | |
| 7 | 5, 6 | eqtri 2752 | . . . 4 ⊢ ∪ ( M “ suc 𝐴) = (∪ ( M “ 𝐴) ∪ ∪ ( M “ {𝐴})) |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝐴 ∈ On → ∪ ( M “ suc 𝐴) = (∪ ( M “ 𝐴) ∪ ∪ ( M “ {𝐴}))) |
| 9 | oldval 27762 | . . . . 5 ⊢ (𝐴 ∈ On → ( O ‘𝐴) = ∪ ( M “ 𝐴)) | |
| 10 | 9 | eqcomd 2735 | . . . 4 ⊢ (𝐴 ∈ On → ∪ ( M “ 𝐴) = ( O ‘𝐴)) |
| 11 | madef 27764 | . . . . . . . 8 ⊢ M :On⟶𝒫 No | |
| 12 | ffn 6688 | . . . . . . . 8 ⊢ ( M :On⟶𝒫 No → M Fn On) | |
| 13 | 11, 12 | ax-mp 5 | . . . . . . 7 ⊢ M Fn On |
| 14 | fnsnfv 6940 | . . . . . . . 8 ⊢ (( M Fn On ∧ 𝐴 ∈ On) → {( M ‘𝐴)} = ( M “ {𝐴})) | |
| 15 | 14 | eqcomd 2735 | . . . . . . 7 ⊢ (( M Fn On ∧ 𝐴 ∈ On) → ( M “ {𝐴}) = {( M ‘𝐴)}) |
| 16 | 13, 15 | mpan 690 | . . . . . 6 ⊢ (𝐴 ∈ On → ( M “ {𝐴}) = {( M ‘𝐴)}) |
| 17 | 16 | unieqd 4884 | . . . . 5 ⊢ (𝐴 ∈ On → ∪ ( M “ {𝐴}) = ∪ {( M ‘𝐴)}) |
| 18 | fvex 6871 | . . . . . 6 ⊢ ( M ‘𝐴) ∈ V | |
| 19 | 18 | unisn 4890 | . . . . 5 ⊢ ∪ {( M ‘𝐴)} = ( M ‘𝐴) |
| 20 | 17, 19 | eqtrdi 2780 | . . . 4 ⊢ (𝐴 ∈ On → ∪ ( M “ {𝐴}) = ( M ‘𝐴)) |
| 21 | 10, 20 | uneq12d 4132 | . . 3 ⊢ (𝐴 ∈ On → (∪ ( M “ 𝐴) ∪ ∪ ( M “ {𝐴})) = (( O ‘𝐴) ∪ ( M ‘𝐴))) |
| 22 | oldssmade 27789 | . . . . 5 ⊢ ( O ‘𝐴) ⊆ ( M ‘𝐴) | |
| 23 | 22 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ On → ( O ‘𝐴) ⊆ ( M ‘𝐴)) |
| 24 | ssequn1 4149 | . . . 4 ⊢ (( O ‘𝐴) ⊆ ( M ‘𝐴) ↔ (( O ‘𝐴) ∪ ( M ‘𝐴)) = ( M ‘𝐴)) | |
| 25 | 23, 24 | sylib 218 | . . 3 ⊢ (𝐴 ∈ On → (( O ‘𝐴) ∪ ( M ‘𝐴)) = ( M ‘𝐴)) |
| 26 | 8, 21, 25 | 3eqtrrd 2769 | . 2 ⊢ (𝐴 ∈ On → ( M ‘𝐴) = ∪ ( M “ suc 𝐴)) |
| 27 | onsuc 7787 | . . 3 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
| 28 | oldval 27762 | . . 3 ⊢ (suc 𝐴 ∈ On → ( O ‘suc 𝐴) = ∪ ( M “ suc 𝐴)) | |
| 29 | 27, 28 | syl 17 | . 2 ⊢ (𝐴 ∈ On → ( O ‘suc 𝐴) = ∪ ( M “ suc 𝐴)) |
| 30 | 26, 29 | eqtr4d 2767 | 1 ⊢ (𝐴 ∈ On → ( M ‘𝐴) = ( O ‘suc 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cun 3912 ⊆ wss 3914 𝒫 cpw 4563 {csn 4589 ∪ cuni 4871 “ cima 5641 Oncon0 6332 suc csuc 6334 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 No csur 27551 M cmade 27750 O cold 27751 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-1o 8434 df-2o 8435 df-no 27554 df-slt 27555 df-bday 27556 df-sslt 27693 df-scut 27695 df-made 27755 df-old 27756 |
| This theorem is referenced by: oldsuc 27797 oldlim 27798 |
| Copyright terms: Public domain | W3C validator |