| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > madeoldsuc | Structured version Visualization version GIF version | ||
| Description: The made set is the old set of its successor. (Contributed by Scott Fenton, 8-Aug-2024.) |
| Ref | Expression |
|---|---|
| madeoldsuc | ⊢ (𝐴 ∈ On → ( M ‘𝐴) = ( O ‘suc 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-suc 6326 | . . . . . . . 8 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 2 | 1 | imaeq2i 6018 | . . . . . . 7 ⊢ ( M “ suc 𝐴) = ( M “ (𝐴 ∪ {𝐴})) |
| 3 | imaundi 6110 | . . . . . . 7 ⊢ ( M “ (𝐴 ∪ {𝐴})) = (( M “ 𝐴) ∪ ( M “ {𝐴})) | |
| 4 | 2, 3 | eqtri 2752 | . . . . . 6 ⊢ ( M “ suc 𝐴) = (( M “ 𝐴) ∪ ( M “ {𝐴})) |
| 5 | 4 | unieqi 4879 | . . . . 5 ⊢ ∪ ( M “ suc 𝐴) = ∪ (( M “ 𝐴) ∪ ( M “ {𝐴})) |
| 6 | uniun 4890 | . . . . 5 ⊢ ∪ (( M “ 𝐴) ∪ ( M “ {𝐴})) = (∪ ( M “ 𝐴) ∪ ∪ ( M “ {𝐴})) | |
| 7 | 5, 6 | eqtri 2752 | . . . 4 ⊢ ∪ ( M “ suc 𝐴) = (∪ ( M “ 𝐴) ∪ ∪ ( M “ {𝐴})) |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝐴 ∈ On → ∪ ( M “ suc 𝐴) = (∪ ( M “ 𝐴) ∪ ∪ ( M “ {𝐴}))) |
| 9 | oldval 27738 | . . . . 5 ⊢ (𝐴 ∈ On → ( O ‘𝐴) = ∪ ( M “ 𝐴)) | |
| 10 | 9 | eqcomd 2735 | . . . 4 ⊢ (𝐴 ∈ On → ∪ ( M “ 𝐴) = ( O ‘𝐴)) |
| 11 | madef 27740 | . . . . . . . 8 ⊢ M :On⟶𝒫 No | |
| 12 | ffn 6670 | . . . . . . . 8 ⊢ ( M :On⟶𝒫 No → M Fn On) | |
| 13 | 11, 12 | ax-mp 5 | . . . . . . 7 ⊢ M Fn On |
| 14 | fnsnfv 6922 | . . . . . . . 8 ⊢ (( M Fn On ∧ 𝐴 ∈ On) → {( M ‘𝐴)} = ( M “ {𝐴})) | |
| 15 | 14 | eqcomd 2735 | . . . . . . 7 ⊢ (( M Fn On ∧ 𝐴 ∈ On) → ( M “ {𝐴}) = {( M ‘𝐴)}) |
| 16 | 13, 15 | mpan 690 | . . . . . 6 ⊢ (𝐴 ∈ On → ( M “ {𝐴}) = {( M ‘𝐴)}) |
| 17 | 16 | unieqd 4880 | . . . . 5 ⊢ (𝐴 ∈ On → ∪ ( M “ {𝐴}) = ∪ {( M ‘𝐴)}) |
| 18 | fvex 6853 | . . . . . 6 ⊢ ( M ‘𝐴) ∈ V | |
| 19 | 18 | unisn 4886 | . . . . 5 ⊢ ∪ {( M ‘𝐴)} = ( M ‘𝐴) |
| 20 | 17, 19 | eqtrdi 2780 | . . . 4 ⊢ (𝐴 ∈ On → ∪ ( M “ {𝐴}) = ( M ‘𝐴)) |
| 21 | 10, 20 | uneq12d 4128 | . . 3 ⊢ (𝐴 ∈ On → (∪ ( M “ 𝐴) ∪ ∪ ( M “ {𝐴})) = (( O ‘𝐴) ∪ ( M ‘𝐴))) |
| 22 | oldssmade 27765 | . . . . 5 ⊢ ( O ‘𝐴) ⊆ ( M ‘𝐴) | |
| 23 | 22 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ On → ( O ‘𝐴) ⊆ ( M ‘𝐴)) |
| 24 | ssequn1 4145 | . . . 4 ⊢ (( O ‘𝐴) ⊆ ( M ‘𝐴) ↔ (( O ‘𝐴) ∪ ( M ‘𝐴)) = ( M ‘𝐴)) | |
| 25 | 23, 24 | sylib 218 | . . 3 ⊢ (𝐴 ∈ On → (( O ‘𝐴) ∪ ( M ‘𝐴)) = ( M ‘𝐴)) |
| 26 | 8, 21, 25 | 3eqtrrd 2769 | . 2 ⊢ (𝐴 ∈ On → ( M ‘𝐴) = ∪ ( M “ suc 𝐴)) |
| 27 | onsuc 7767 | . . 3 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
| 28 | oldval 27738 | . . 3 ⊢ (suc 𝐴 ∈ On → ( O ‘suc 𝐴) = ∪ ( M “ suc 𝐴)) | |
| 29 | 27, 28 | syl 17 | . 2 ⊢ (𝐴 ∈ On → ( O ‘suc 𝐴) = ∪ ( M “ suc 𝐴)) |
| 30 | 26, 29 | eqtr4d 2767 | 1 ⊢ (𝐴 ∈ On → ( M ‘𝐴) = ( O ‘suc 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cun 3909 ⊆ wss 3911 𝒫 cpw 4559 {csn 4585 ∪ cuni 4867 “ cima 5634 Oncon0 6320 suc csuc 6322 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 No csur 27527 M cmade 27726 O cold 27727 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-1o 8411 df-2o 8412 df-no 27530 df-slt 27531 df-bday 27532 df-sslt 27669 df-scut 27671 df-made 27731 df-old 27732 |
| This theorem is referenced by: oldsuc 27773 oldlim 27774 |
| Copyright terms: Public domain | W3C validator |