MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madeoldsuc Structured version   Visualization version   GIF version

Theorem madeoldsuc 27853
Description: The made set is the old set of its successor. (Contributed by Scott Fenton, 8-Aug-2024.)
Assertion
Ref Expression
madeoldsuc (𝐴 ∈ On → ( M ‘𝐴) = ( O ‘suc 𝐴))

Proof of Theorem madeoldsuc
StepHypRef Expression
1 df-suc 6363 . . . . . . . 8 suc 𝐴 = (𝐴 ∪ {𝐴})
21imaeq2i 6050 . . . . . . 7 ( M “ suc 𝐴) = ( M “ (𝐴 ∪ {𝐴}))
3 imaundi 6143 . . . . . . 7 ( M “ (𝐴 ∪ {𝐴})) = (( M “ 𝐴) ∪ ( M “ {𝐴}))
42, 3eqtri 2759 . . . . . 6 ( M “ suc 𝐴) = (( M “ 𝐴) ∪ ( M “ {𝐴}))
54unieqi 4900 . . . . 5 ( M “ suc 𝐴) = (( M “ 𝐴) ∪ ( M “ {𝐴}))
6 uniun 4911 . . . . 5 (( M “ 𝐴) ∪ ( M “ {𝐴})) = ( ( M “ 𝐴) ∪ ( M “ {𝐴}))
75, 6eqtri 2759 . . . 4 ( M “ suc 𝐴) = ( ( M “ 𝐴) ∪ ( M “ {𝐴}))
87a1i 11 . . 3 (𝐴 ∈ On → ( M “ suc 𝐴) = ( ( M “ 𝐴) ∪ ( M “ {𝐴})))
9 oldval 27819 . . . . 5 (𝐴 ∈ On → ( O ‘𝐴) = ( M “ 𝐴))
109eqcomd 2742 . . . 4 (𝐴 ∈ On → ( M “ 𝐴) = ( O ‘𝐴))
11 madef 27821 . . . . . . . 8 M :On⟶𝒫 No
12 ffn 6711 . . . . . . . 8 ( M :On⟶𝒫 No → M Fn On)
1311, 12ax-mp 5 . . . . . . 7 M Fn On
14 fnsnfv 6963 . . . . . . . 8 (( M Fn On ∧ 𝐴 ∈ On) → {( M ‘𝐴)} = ( M “ {𝐴}))
1514eqcomd 2742 . . . . . . 7 (( M Fn On ∧ 𝐴 ∈ On) → ( M “ {𝐴}) = {( M ‘𝐴)})
1613, 15mpan 690 . . . . . 6 (𝐴 ∈ On → ( M “ {𝐴}) = {( M ‘𝐴)})
1716unieqd 4901 . . . . 5 (𝐴 ∈ On → ( M “ {𝐴}) = {( M ‘𝐴)})
18 fvex 6894 . . . . . 6 ( M ‘𝐴) ∈ V
1918unisn 4907 . . . . 5 {( M ‘𝐴)} = ( M ‘𝐴)
2017, 19eqtrdi 2787 . . . 4 (𝐴 ∈ On → ( M “ {𝐴}) = ( M ‘𝐴))
2110, 20uneq12d 4149 . . 3 (𝐴 ∈ On → ( ( M “ 𝐴) ∪ ( M “ {𝐴})) = (( O ‘𝐴) ∪ ( M ‘𝐴)))
22 oldssmade 27846 . . . . 5 ( O ‘𝐴) ⊆ ( M ‘𝐴)
2322a1i 11 . . . 4 (𝐴 ∈ On → ( O ‘𝐴) ⊆ ( M ‘𝐴))
24 ssequn1 4166 . . . 4 (( O ‘𝐴) ⊆ ( M ‘𝐴) ↔ (( O ‘𝐴) ∪ ( M ‘𝐴)) = ( M ‘𝐴))
2523, 24sylib 218 . . 3 (𝐴 ∈ On → (( O ‘𝐴) ∪ ( M ‘𝐴)) = ( M ‘𝐴))
268, 21, 253eqtrrd 2776 . 2 (𝐴 ∈ On → ( M ‘𝐴) = ( M “ suc 𝐴))
27 onsuc 7810 . . 3 (𝐴 ∈ On → suc 𝐴 ∈ On)
28 oldval 27819 . . 3 (suc 𝐴 ∈ On → ( O ‘suc 𝐴) = ( M “ suc 𝐴))
2927, 28syl 17 . 2 (𝐴 ∈ On → ( O ‘suc 𝐴) = ( M “ suc 𝐴))
3026, 29eqtr4d 2774 1 (𝐴 ∈ On → ( M ‘𝐴) = ( O ‘suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cun 3929  wss 3931  𝒫 cpw 4580  {csn 4606   cuni 4888  cima 5662  Oncon0 6357  suc csuc 6359   Fn wfn 6531  wf 6532  cfv 6536   No csur 27608   M cmade 27807   O cold 27808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-1o 8485  df-2o 8486  df-no 27611  df-slt 27612  df-bday 27613  df-sslt 27750  df-scut 27752  df-made 27812  df-old 27813
This theorem is referenced by:  oldsuc  27854  oldlim  27855
  Copyright terms: Public domain W3C validator