| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uprcl2a | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the class of universal property. (Contributed by Zhi Wang, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| uprcl2a.x | ⊢ (𝜑 → 𝑋(𝐺(𝑂 UP 𝑃)𝑊)𝑀) |
| Ref | Expression |
|---|---|
| uprcl2a | ⊢ (𝜑 → 𝐺 ∈ (𝑂 Func 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uprcl2a.x | . . . 4 ⊢ (𝜑 → 𝑋(𝐺(𝑂 UP 𝑃)𝑊)𝑀) | |
| 2 | df-br 5090 | . . . 4 ⊢ (𝑋(𝐺(𝑂 UP 𝑃)𝑊)𝑀 ↔ 〈𝑋, 𝑀〉 ∈ (𝐺(𝑂 UP 𝑃)𝑊)) | |
| 3 | 1, 2 | sylib 218 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑀〉 ∈ (𝐺(𝑂 UP 𝑃)𝑊)) |
| 4 | eqid 2731 | . . . 4 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 5 | 4 | uprcl 49284 | . . 3 ⊢ (〈𝑋, 𝑀〉 ∈ (𝐺(𝑂 UP 𝑃)𝑊) → (𝐺 ∈ (𝑂 Func 𝑃) ∧ 𝑊 ∈ (Base‘𝑃))) |
| 6 | 3, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐺 ∈ (𝑂 Func 𝑃) ∧ 𝑊 ∈ (Base‘𝑃))) |
| 7 | 6 | simpld 494 | 1 ⊢ (𝜑 → 𝐺 ∈ (𝑂 Func 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 〈cop 4579 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 Func cfunc 17761 UP cup 49273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-func 17765 df-up 49274 |
| This theorem is referenced by: oppfuprcl 49304 uptrai 49317 |
| Copyright terms: Public domain | W3C validator |