Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uptrai Structured version   Visualization version   GIF version

Theorem uptrai 49332
Description: Universal property and fully faithful functor. (Contributed by Zhi Wang, 16-Nov-2025.)
Hypotheses
Ref Expression
uptra.y (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)
uptra.k (𝜑𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
uptra.g (𝜑 → (𝐾func 𝐹) = 𝐺)
uptrai.n (𝜑 → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑀) = 𝑁)
uptrai.z (𝜑𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀)
Assertion
Ref Expression
uptrai (𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁)

Proof of Theorem uptrai
StepHypRef Expression
1 uptrai.z . 2 (𝜑𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀)
2 uptra.y . . . . 5 (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)
32adantr 480 . . . 4 ((𝜑𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) → ((1st𝐾)‘𝑋) = 𝑌)
4 uptra.k . . . . 5 (𝜑𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
54adantr 480 . . . 4 ((𝜑𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
6 uptra.g . . . . 5 (𝜑 → (𝐾func 𝐹) = 𝐺)
76adantr 480 . . . 4 ((𝜑𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) → (𝐾func 𝐹) = 𝐺)
8 eqid 2733 . . . 4 (Base‘𝐷) = (Base‘𝐷)
9 simpr 484 . . . . . 6 ((𝜑𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) → 𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀)
109up1st2nd 49300 . . . . 5 ((𝜑𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) → 𝑍(⟨(1st𝐹), (2nd𝐹)⟩(𝐶 UP 𝐷)𝑋)𝑀)
1110, 8uprcl3 49305 . . . 4 ((𝜑𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) → 𝑋 ∈ (Base‘𝐷))
129uprcl2a 49318 . . . 4 ((𝜑𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) → 𝐹 ∈ (𝐶 Func 𝐷))
13 uptrai.n . . . . 5 (𝜑 → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑀) = 𝑁)
1413adantr 480 . . . 4 ((𝜑𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑀) = 𝑁)
15 eqid 2733 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
1610, 15uprcl5 49307 . . . 4 ((𝜑𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) → 𝑀 ∈ (𝑋(Hom ‘𝐷)((1st𝐹)‘𝑍)))
173, 5, 7, 8, 11, 12, 14, 15, 16uptra 49330 . . 3 ((𝜑𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) → (𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁))
181, 17mpdan 687 . 2 (𝜑 → (𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁))
191, 18mpbid 232 1 (𝜑𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  cin 3898   class class class wbr 5095  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929  Basecbs 17130  Hom chom 17182  func ccofu 17773   Full cful 17821   Faith cfth 17822   UP cup 49288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-map 8761  df-ixp 8831  df-cat 17584  df-cid 17585  df-func 17775  df-cofu 17777  df-full 17823  df-fth 17824  df-up 49289
This theorem is referenced by:  uobffth  49333  uobeqw  49334
  Copyright terms: Public domain W3C validator