| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uptrai | Structured version Visualization version GIF version | ||
| Description: Universal property and fully faithful functor. (Contributed by Zhi Wang, 16-Nov-2025.) |
| Ref | Expression |
|---|---|
| uptra.y | ⊢ (𝜑 → ((1st ‘𝐾)‘𝑋) = 𝑌) |
| uptra.k | ⊢ (𝜑 → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) |
| uptra.g | ⊢ (𝜑 → (𝐾 ∘func 𝐹) = 𝐺) |
| uptrai.n | ⊢ (𝜑 → ((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑍))‘𝑀) = 𝑁) |
| uptrai.z | ⊢ (𝜑 → 𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) |
| Ref | Expression |
|---|---|
| uptrai | ⊢ (𝜑 → 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uptrai.z | . 2 ⊢ (𝜑 → 𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) | |
| 2 | uptra.y | . . . . 5 ⊢ (𝜑 → ((1st ‘𝐾)‘𝑋) = 𝑌) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) → ((1st ‘𝐾)‘𝑋) = 𝑌) |
| 4 | uptra.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) | |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) |
| 6 | uptra.g | . . . . 5 ⊢ (𝜑 → (𝐾 ∘func 𝐹) = 𝐺) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) → (𝐾 ∘func 𝐹) = 𝐺) |
| 8 | eqid 2730 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 9 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) → 𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) | |
| 10 | 9 | up1st2nd 49196 | . . . . 5 ⊢ ((𝜑 ∧ 𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) → 𝑍(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐶 UP 𝐷)𝑋)𝑀) |
| 11 | 10, 8 | uprcl3 49201 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) → 𝑋 ∈ (Base‘𝐷)) |
| 12 | 9 | uprcl2a 49214 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 13 | uptrai.n | . . . . 5 ⊢ (𝜑 → ((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑍))‘𝑀) = 𝑁) | |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) → ((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑍))‘𝑀) = 𝑁) |
| 15 | eqid 2730 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 16 | 10, 15 | uprcl5 49203 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) → 𝑀 ∈ (𝑋(Hom ‘𝐷)((1st ‘𝐹)‘𝑍))) |
| 17 | 3, 5, 7, 8, 11, 12, 14, 15, 16 | uptra 49226 | . . 3 ⊢ ((𝜑 ∧ 𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) → (𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀 ↔ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁)) |
| 18 | 1, 17 | mpdan 687 | . 2 ⊢ (𝜑 → (𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀 ↔ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁)) |
| 19 | 1, 18 | mpbid 232 | 1 ⊢ (𝜑 → 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∩ cin 3899 class class class wbr 5089 ‘cfv 6477 (class class class)co 7341 1st c1st 7914 2nd c2nd 7915 Basecbs 17112 Hom chom 17164 ∘func ccofu 17755 Full cful 17803 Faith cfth 17804 UP cup 49184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-map 8747 df-ixp 8817 df-cat 17566 df-cid 17567 df-func 17757 df-cofu 17759 df-full 17805 df-fth 17806 df-up 49185 |
| This theorem is referenced by: uobffth 49229 uobeqw 49230 |
| Copyright terms: Public domain | W3C validator |