| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uptrai | Structured version Visualization version GIF version | ||
| Description: Universal property and fully faithful functor. (Contributed by Zhi Wang, 16-Nov-2025.) |
| Ref | Expression |
|---|---|
| uptra.y | ⊢ (𝜑 → ((1st ‘𝐾)‘𝑋) = 𝑌) |
| uptra.k | ⊢ (𝜑 → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) |
| uptra.g | ⊢ (𝜑 → (𝐾 ∘func 𝐹) = 𝐺) |
| uptrai.n | ⊢ (𝜑 → ((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑍))‘𝑀) = 𝑁) |
| uptrai.z | ⊢ (𝜑 → 𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) |
| Ref | Expression |
|---|---|
| uptrai | ⊢ (𝜑 → 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uptrai.z | . 2 ⊢ (𝜑 → 𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) | |
| 2 | uptra.y | . . . . 5 ⊢ (𝜑 → ((1st ‘𝐾)‘𝑋) = 𝑌) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) → ((1st ‘𝐾)‘𝑋) = 𝑌) |
| 4 | uptra.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) | |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) |
| 6 | uptra.g | . . . . 5 ⊢ (𝜑 → (𝐾 ∘func 𝐹) = 𝐺) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) → (𝐾 ∘func 𝐹) = 𝐺) |
| 8 | eqid 2733 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 9 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) → 𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) | |
| 10 | 9 | up1st2nd 49300 | . . . . 5 ⊢ ((𝜑 ∧ 𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) → 𝑍(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐶 UP 𝐷)𝑋)𝑀) |
| 11 | 10, 8 | uprcl3 49305 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) → 𝑋 ∈ (Base‘𝐷)) |
| 12 | 9 | uprcl2a 49318 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 13 | uptrai.n | . . . . 5 ⊢ (𝜑 → ((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑍))‘𝑀) = 𝑁) | |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) → ((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑍))‘𝑀) = 𝑁) |
| 15 | eqid 2733 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 16 | 10, 15 | uprcl5 49307 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) → 𝑀 ∈ (𝑋(Hom ‘𝐷)((1st ‘𝐹)‘𝑍))) |
| 17 | 3, 5, 7, 8, 11, 12, 14, 15, 16 | uptra 49330 | . . 3 ⊢ ((𝜑 ∧ 𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀) → (𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀 ↔ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁)) |
| 18 | 1, 17 | mpdan 687 | . 2 ⊢ (𝜑 → (𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀 ↔ 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁)) |
| 19 | 1, 18 | mpbid 232 | 1 ⊢ (𝜑 → 𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∩ cin 3898 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 1st c1st 7928 2nd c2nd 7929 Basecbs 17130 Hom chom 17182 ∘func ccofu 17773 Full cful 17821 Faith cfth 17822 UP cup 49288 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-map 8761 df-ixp 8831 df-cat 17584 df-cid 17585 df-func 17775 df-cofu 17777 df-full 17823 df-fth 17824 df-up 49289 |
| This theorem is referenced by: uobffth 49333 uobeqw 49334 |
| Copyright terms: Public domain | W3C validator |