| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uprcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the class of universal property. (Contributed by Zhi Wang, 25-Sep-2025.) |
| Ref | Expression |
|---|---|
| uprcl.c | ⊢ 𝐶 = (Base‘𝐸) |
| Ref | Expression |
|---|---|
| uprcl | ⊢ (𝑋 ∈ (𝐹(𝐷 UP 𝐸)𝑊) → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝑊 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 2 | uprcl.c | . . 3 ⊢ 𝐶 = (Base‘𝐸) | |
| 3 | eqid 2731 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 4 | eqid 2731 | . . 3 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
| 5 | eqid 2731 | . . 3 ⊢ (comp‘𝐸) = (comp‘𝐸) | |
| 6 | 1, 2, 3, 4, 5 | upfval 49207 | . 2 ⊢ (𝐷 UP 𝐸) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑤 ∈ 𝐶 ↦ {〈𝑥, 𝑚〉 ∣ ((𝑥 ∈ (Base‘𝐷) ∧ 𝑚 ∈ (𝑤(Hom ‘𝐸)((1st ‘𝑓)‘𝑥))) ∧ ∀𝑦 ∈ (Base‘𝐷)∀𝑔 ∈ (𝑤(Hom ‘𝐸)((1st ‘𝑓)‘𝑦))∃!𝑘 ∈ (𝑥(Hom ‘𝐷)𝑦)𝑔 = (((𝑥(2nd ‘𝑓)𝑦)‘𝑘)(〈𝑤, ((1st ‘𝑓)‘𝑥)〉(comp‘𝐸)((1st ‘𝑓)‘𝑦))𝑚))}) |
| 7 | 6 | elmpocl 7587 | 1 ⊢ (𝑋 ∈ (𝐹(𝐷 UP 𝐸)𝑊) → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝑊 ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃!wreu 3344 〈cop 4582 {copab 5153 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 Basecbs 17117 Hom chom 17169 compcco 17170 Func cfunc 17758 UP cup 49204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-func 17762 df-up 49205 |
| This theorem is referenced by: up1st2nd 49216 uprcl2 49220 uprcl3 49221 uprcl2a 49234 lanval2 49658 ranval2 49661 ranval3 49662 lmdfval2 49686 cmdfval2 49687 |
| Copyright terms: Public domain | W3C validator |