Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frlmdim Structured version   Visualization version   GIF version

Theorem frlmdim 31163
 Description: Dimension of a free left module. (Contributed by Thierry Arnoux, 20-May-2023.)
Hypothesis
Ref Expression
frlmdim.f 𝐹 = (𝑅 freeLMod 𝐼)
Assertion
Ref Expression
frlmdim ((𝑅 ∈ DivRing ∧ 𝐼𝑉) → (dim‘𝐹) = (♯‘𝐼))

Proof of Theorem frlmdim
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmdim.f . . . 4 𝐹 = (𝑅 freeLMod 𝐼)
21frlmlvec 20472 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼𝑉) → 𝐹 ∈ LVec)
3 drngring 19523 . . . 4 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
4 eqid 2798 . . . . 5 (𝑅 unitVec 𝐼) = (𝑅 unitVec 𝐼)
5 eqid 2798 . . . . 5 (LBasis‘𝐹) = (LBasis‘𝐹)
61, 4, 5frlmlbs 20508 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹))
73, 6sylan 583 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼𝑉) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹))
85dimval 31155 . . 3 ((𝐹 ∈ LVec ∧ ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹)) → (dim‘𝐹) = (♯‘ran (𝑅 unitVec 𝐼)))
92, 7, 8syl2anc 587 . 2 ((𝑅 ∈ DivRing ∧ 𝐼𝑉) → (dim‘𝐹) = (♯‘ran (𝑅 unitVec 𝐼)))
10 simpr 488 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼𝑉) → 𝐼𝑉)
11 drngnzr 20049 . . . 4 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
12 eqid 2798 . . . . 5 (Base‘𝐹) = (Base‘𝐹)
134, 1, 12uvcf1 20503 . . . 4 ((𝑅 ∈ NzRing ∧ 𝐼𝑉) → (𝑅 unitVec 𝐼):𝐼1-1→(Base‘𝐹))
1411, 13sylan 583 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼𝑉) → (𝑅 unitVec 𝐼):𝐼1-1→(Base‘𝐹))
15 hashf1rn 13729 . . 3 ((𝐼𝑉 ∧ (𝑅 unitVec 𝐼):𝐼1-1→(Base‘𝐹)) → (♯‘(𝑅 unitVec 𝐼)) = (♯‘ran (𝑅 unitVec 𝐼)))
1610, 14, 15syl2anc 587 . 2 ((𝑅 ∈ DivRing ∧ 𝐼𝑉) → (♯‘(𝑅 unitVec 𝐼)) = (♯‘ran (𝑅 unitVec 𝐼)))
17 mptexg 6971 . . . . . . 7 (𝐼𝑉 → (𝑘𝐼 ↦ if(𝑘 = 𝑗, (1r𝑅), (0g𝑅))) ∈ V)
1817ad2antlr 726 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑉) ∧ 𝑗𝐼) → (𝑘𝐼 ↦ if(𝑘 = 𝑗, (1r𝑅), (0g𝑅))) ∈ V)
1918ralrimiva 3149 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼𝑉) → ∀𝑗𝐼 (𝑘𝐼 ↦ if(𝑘 = 𝑗, (1r𝑅), (0g𝑅))) ∈ V)
20 eqid 2798 . . . . . 6 (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, (1r𝑅), (0g𝑅)))) = (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, (1r𝑅), (0g𝑅))))
2120fnmpt 6468 . . . . 5 (∀𝑗𝐼 (𝑘𝐼 ↦ if(𝑘 = 𝑗, (1r𝑅), (0g𝑅))) ∈ V → (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, (1r𝑅), (0g𝑅)))) Fn 𝐼)
2219, 21syl 17 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼𝑉) → (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, (1r𝑅), (0g𝑅)))) Fn 𝐼)
23 eqid 2798 . . . . . 6 (1r𝑅) = (1r𝑅)
24 eqid 2798 . . . . . 6 (0g𝑅) = (0g𝑅)
254, 23, 24uvcfval 20495 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼𝑉) → (𝑅 unitVec 𝐼) = (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, (1r𝑅), (0g𝑅)))))
2625fneq1d 6424 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼𝑉) → ((𝑅 unitVec 𝐼) Fn 𝐼 ↔ (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, (1r𝑅), (0g𝑅)))) Fn 𝐼))
2722, 26mpbird 260 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼𝑉) → (𝑅 unitVec 𝐼) Fn 𝐼)
28 hashfn 13752 . . 3 ((𝑅 unitVec 𝐼) Fn 𝐼 → (♯‘(𝑅 unitVec 𝐼)) = (♯‘𝐼))
2927, 28syl 17 . 2 ((𝑅 ∈ DivRing ∧ 𝐼𝑉) → (♯‘(𝑅 unitVec 𝐼)) = (♯‘𝐼))
309, 16, 293eqtr2d 2839 1 ((𝑅 ∈ DivRing ∧ 𝐼𝑉) → (dim‘𝐹) = (♯‘𝐼))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106  Vcvv 3442  ifcif 4428   ↦ cmpt 5114  ran crn 5524   Fn wfn 6327  –1-1→wf1 6329  ‘cfv 6332  (class class class)co 7145  ♯chash 13706  Basecbs 16495  0gc0g 16725  1rcur 19265  Ringcrg 19311  DivRingcdr 19516  LBasisclbs 19860  LVecclvec 19888  NzRingcnzr 20044   freeLMod cfrlm 20457   unitVec cuvc 20493  dimcldim 31153 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-reg 9058  ax-inf2 9106  ax-ac2 9892  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-iin 4888  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-isom 6341  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7400  df-om 7574  df-1st 7684  df-2nd 7685  df-supp 7827  df-tpos 7893  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-oadd 8107  df-er 8290  df-map 8409  df-ixp 8463  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-fsupp 8836  df-sup 8908  df-oi 8976  df-r1 9195  df-rank 9196  df-card 9370  df-acn 9373  df-ac 9545  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-nn 11644  df-2 11706  df-3 11707  df-4 11708  df-5 11709  df-6 11710  df-7 11711  df-8 11712  df-9 11713  df-n0 11904  df-xnn0 11976  df-z 11990  df-dec 12107  df-uz 12252  df-fz 12906  df-fzo 13049  df-seq 13385  df-hash 13707  df-struct 16497  df-ndx 16498  df-slot 16499  df-base 16501  df-sets 16502  df-ress 16503  df-plusg 16590  df-mulr 16591  df-sca 16593  df-vsca 16594  df-ip 16595  df-tset 16596  df-ple 16597  df-ocomp 16598  df-ds 16599  df-hom 16601  df-cco 16602  df-0g 16727  df-gsum 16728  df-prds 16733  df-pws 16735  df-mre 16869  df-mrc 16870  df-mri 16871  df-acs 16872  df-proset 17550  df-drs 17551  df-poset 17568  df-ipo 17774  df-mgm 17864  df-sgrp 17913  df-mnd 17924  df-mhm 17968  df-submnd 17969  df-grp 18118  df-minusg 18119  df-sbg 18120  df-mulg 18238  df-subg 18289  df-ghm 18369  df-cntz 18460  df-cmn 18921  df-abl 18922  df-mgp 19254  df-ur 19266  df-ring 19313  df-oppr 19390  df-dvdsr 19408  df-unit 19409  df-invr 19439  df-drng 19518  df-subrg 19547  df-lmod 19650  df-lss 19718  df-lsp 19758  df-lmhm 19808  df-lbs 19861  df-lvec 19889  df-sra 19958  df-rgmod 19959  df-nzr 20045  df-dsmm 20443  df-frlm 20458  df-uvc 20494  df-dim 31154 This theorem is referenced by:  rrxdim  31166  matdim  31167
 Copyright terms: Public domain W3C validator