![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frlmdim | Structured version Visualization version GIF version |
Description: Dimension of a free left module. (Contributed by Thierry Arnoux, 20-May-2023.) |
Ref | Expression |
---|---|
frlmdim.f | β’ πΉ = (π freeLMod πΌ) |
Ref | Expression |
---|---|
frlmdim | β’ ((π β DivRing β§ πΌ β π) β (dimβπΉ) = (β―βπΌ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmdim.f | . . . 4 β’ πΉ = (π freeLMod πΌ) | |
2 | 1 | frlmlvec 21689 | . . 3 β’ ((π β DivRing β§ πΌ β π) β πΉ β LVec) |
3 | drngring 20625 | . . . 4 β’ (π β DivRing β π β Ring) | |
4 | eqid 2728 | . . . . 5 β’ (π unitVec πΌ) = (π unitVec πΌ) | |
5 | eqid 2728 | . . . . 5 β’ (LBasisβπΉ) = (LBasisβπΉ) | |
6 | 1, 4, 5 | frlmlbs 21725 | . . . 4 β’ ((π β Ring β§ πΌ β π) β ran (π unitVec πΌ) β (LBasisβπΉ)) |
7 | 3, 6 | sylan 579 | . . 3 β’ ((π β DivRing β§ πΌ β π) β ran (π unitVec πΌ) β (LBasisβπΉ)) |
8 | 5 | dimval 33289 | . . 3 β’ ((πΉ β LVec β§ ran (π unitVec πΌ) β (LBasisβπΉ)) β (dimβπΉ) = (β―βran (π unitVec πΌ))) |
9 | 2, 7, 8 | syl2anc 583 | . 2 β’ ((π β DivRing β§ πΌ β π) β (dimβπΉ) = (β―βran (π unitVec πΌ))) |
10 | simpr 484 | . . 3 β’ ((π β DivRing β§ πΌ β π) β πΌ β π) | |
11 | drngnzr 20638 | . . . 4 β’ (π β DivRing β π β NzRing) | |
12 | eqid 2728 | . . . . 5 β’ (BaseβπΉ) = (BaseβπΉ) | |
13 | 4, 1, 12 | uvcf1 21720 | . . . 4 β’ ((π β NzRing β§ πΌ β π) β (π unitVec πΌ):πΌβ1-1β(BaseβπΉ)) |
14 | 11, 13 | sylan 579 | . . 3 β’ ((π β DivRing β§ πΌ β π) β (π unitVec πΌ):πΌβ1-1β(BaseβπΉ)) |
15 | hashf1rn 14338 | . . 3 β’ ((πΌ β π β§ (π unitVec πΌ):πΌβ1-1β(BaseβπΉ)) β (β―β(π unitVec πΌ)) = (β―βran (π unitVec πΌ))) | |
16 | 10, 14, 15 | syl2anc 583 | . 2 β’ ((π β DivRing β§ πΌ β π) β (β―β(π unitVec πΌ)) = (β―βran (π unitVec πΌ))) |
17 | mptexg 7228 | . . . . . . 7 β’ (πΌ β π β (π β πΌ β¦ if(π = π, (1rβπ ), (0gβπ ))) β V) | |
18 | 17 | ad2antlr 726 | . . . . . 6 β’ (((π β DivRing β§ πΌ β π) β§ π β πΌ) β (π β πΌ β¦ if(π = π, (1rβπ ), (0gβπ ))) β V) |
19 | 18 | ralrimiva 3142 | . . . . 5 β’ ((π β DivRing β§ πΌ β π) β βπ β πΌ (π β πΌ β¦ if(π = π, (1rβπ ), (0gβπ ))) β V) |
20 | eqid 2728 | . . . . . 6 β’ (π β πΌ β¦ (π β πΌ β¦ if(π = π, (1rβπ ), (0gβπ )))) = (π β πΌ β¦ (π β πΌ β¦ if(π = π, (1rβπ ), (0gβπ )))) | |
21 | 20 | fnmpt 6690 | . . . . 5 β’ (βπ β πΌ (π β πΌ β¦ if(π = π, (1rβπ ), (0gβπ ))) β V β (π β πΌ β¦ (π β πΌ β¦ if(π = π, (1rβπ ), (0gβπ )))) Fn πΌ) |
22 | 19, 21 | syl 17 | . . . 4 β’ ((π β DivRing β§ πΌ β π) β (π β πΌ β¦ (π β πΌ β¦ if(π = π, (1rβπ ), (0gβπ )))) Fn πΌ) |
23 | eqid 2728 | . . . . . 6 β’ (1rβπ ) = (1rβπ ) | |
24 | eqid 2728 | . . . . . 6 β’ (0gβπ ) = (0gβπ ) | |
25 | 4, 23, 24 | uvcfval 21712 | . . . . 5 β’ ((π β DivRing β§ πΌ β π) β (π unitVec πΌ) = (π β πΌ β¦ (π β πΌ β¦ if(π = π, (1rβπ ), (0gβπ ))))) |
26 | 25 | fneq1d 6642 | . . . 4 β’ ((π β DivRing β§ πΌ β π) β ((π unitVec πΌ) Fn πΌ β (π β πΌ β¦ (π β πΌ β¦ if(π = π, (1rβπ ), (0gβπ )))) Fn πΌ)) |
27 | 22, 26 | mpbird 257 | . . 3 β’ ((π β DivRing β§ πΌ β π) β (π unitVec πΌ) Fn πΌ) |
28 | hashfn 14361 | . . 3 β’ ((π unitVec πΌ) Fn πΌ β (β―β(π unitVec πΌ)) = (β―βπΌ)) | |
29 | 27, 28 | syl 17 | . 2 β’ ((π β DivRing β§ πΌ β π) β (β―β(π unitVec πΌ)) = (β―βπΌ)) |
30 | 9, 16, 29 | 3eqtr2d 2774 | 1 β’ ((π β DivRing β§ πΌ β π) β (dimβπΉ) = (β―βπΌ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 βwral 3057 Vcvv 3470 ifcif 4525 β¦ cmpt 5226 ran crn 5674 Fn wfn 6538 β1-1βwf1 6540 βcfv 6543 (class class class)co 7415 β―chash 14316 Basecbs 17174 0gc0g 17415 1rcur 20115 Ringcrg 20167 NzRingcnzr 20445 DivRingcdr 20618 LBasisclbs 20953 LVecclvec 20981 freeLMod cfrlm 21674 unitVec cuvc 21710 dimcldim 33287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-reg 9610 ax-inf2 9659 ax-ac2 10481 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-iin 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7680 df-om 7866 df-1st 7988 df-2nd 7989 df-supp 8161 df-tpos 8226 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-er 8719 df-map 8841 df-ixp 8911 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-fsupp 9381 df-sup 9460 df-oi 9528 df-r1 9782 df-rank 9783 df-card 9957 df-acn 9960 df-ac 10134 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-xnn0 12570 df-z 12584 df-dec 12703 df-uz 12848 df-fz 13512 df-fzo 13655 df-seq 13994 df-hash 14317 df-struct 17110 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ocomp 17248 df-ds 17249 df-hom 17251 df-cco 17252 df-0g 17417 df-gsum 17418 df-prds 17423 df-pws 17425 df-mre 17560 df-mrc 17561 df-mri 17562 df-acs 17563 df-proset 18281 df-drs 18282 df-poset 18299 df-ipo 18514 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-mhm 18734 df-submnd 18735 df-grp 18887 df-minusg 18888 df-sbg 18889 df-mulg 19018 df-subg 19072 df-ghm 19162 df-cntz 19262 df-cmn 19731 df-abl 19732 df-mgp 20069 df-rng 20087 df-ur 20116 df-ring 20169 df-oppr 20267 df-dvdsr 20290 df-unit 20291 df-invr 20321 df-nzr 20446 df-subrg 20502 df-drng 20620 df-lmod 20739 df-lss 20810 df-lsp 20850 df-lmhm 20901 df-lbs 20954 df-lvec 20982 df-sra 21052 df-rgmod 21053 df-dsmm 21660 df-frlm 21675 df-uvc 21711 df-dim 33288 |
This theorem is referenced by: rrxdim 33303 matdim 33304 |
Copyright terms: Public domain | W3C validator |