![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frlmdim | Structured version Visualization version GIF version |
Description: Dimension of a free left module. (Contributed by Thierry Arnoux, 20-May-2023.) |
Ref | Expression |
---|---|
frlmdim.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
Ref | Expression |
---|---|
frlmdim | ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → (dim‘𝐹) = (♯‘𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmdim.f | . . . 4 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
2 | 1 | frlmlvec 21804 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → 𝐹 ∈ LVec) |
3 | drngring 20758 | . . . 4 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
4 | eqid 2740 | . . . . 5 ⊢ (𝑅 unitVec 𝐼) = (𝑅 unitVec 𝐼) | |
5 | eqid 2740 | . . . . 5 ⊢ (LBasis‘𝐹) = (LBasis‘𝐹) | |
6 | 1, 4, 5 | frlmlbs 21840 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹)) |
7 | 3, 6 | sylan 579 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹)) |
8 | 5 | dimval 33613 | . . 3 ⊢ ((𝐹 ∈ LVec ∧ ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹)) → (dim‘𝐹) = (♯‘ran (𝑅 unitVec 𝐼))) |
9 | 2, 7, 8 | syl2anc 583 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → (dim‘𝐹) = (♯‘ran (𝑅 unitVec 𝐼))) |
10 | simpr 484 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → 𝐼 ∈ 𝑉) | |
11 | drngnzr 20770 | . . . 4 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ NzRing) | |
12 | eqid 2740 | . . . . 5 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
13 | 4, 1, 12 | uvcf1 21835 | . . . 4 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑉) → (𝑅 unitVec 𝐼):𝐼–1-1→(Base‘𝐹)) |
14 | 11, 13 | sylan 579 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → (𝑅 unitVec 𝐼):𝐼–1-1→(Base‘𝐹)) |
15 | hashf1rn 14401 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ (𝑅 unitVec 𝐼):𝐼–1-1→(Base‘𝐹)) → (♯‘(𝑅 unitVec 𝐼)) = (♯‘ran (𝑅 unitVec 𝐼))) | |
16 | 10, 14, 15 | syl2anc 583 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → (♯‘(𝑅 unitVec 𝐼)) = (♯‘ran (𝑅 unitVec 𝐼))) |
17 | mptexg 7258 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, (1r‘𝑅), (0g‘𝑅))) ∈ V) | |
18 | 17 | ad2antlr 726 | . . . . . 6 ⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) ∧ 𝑗 ∈ 𝐼) → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, (1r‘𝑅), (0g‘𝑅))) ∈ V) |
19 | 18 | ralrimiva 3152 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → ∀𝑗 ∈ 𝐼 (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, (1r‘𝑅), (0g‘𝑅))) ∈ V) |
20 | eqid 2740 | . . . . . 6 ⊢ (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, (1r‘𝑅), (0g‘𝑅)))) = (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, (1r‘𝑅), (0g‘𝑅)))) | |
21 | 20 | fnmpt 6720 | . . . . 5 ⊢ (∀𝑗 ∈ 𝐼 (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, (1r‘𝑅), (0g‘𝑅))) ∈ V → (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, (1r‘𝑅), (0g‘𝑅)))) Fn 𝐼) |
22 | 19, 21 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, (1r‘𝑅), (0g‘𝑅)))) Fn 𝐼) |
23 | eqid 2740 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
24 | eqid 2740 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
25 | 4, 23, 24 | uvcfval 21827 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → (𝑅 unitVec 𝐼) = (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, (1r‘𝑅), (0g‘𝑅))))) |
26 | 25 | fneq1d 6672 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → ((𝑅 unitVec 𝐼) Fn 𝐼 ↔ (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, (1r‘𝑅), (0g‘𝑅)))) Fn 𝐼)) |
27 | 22, 26 | mpbird 257 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → (𝑅 unitVec 𝐼) Fn 𝐼) |
28 | hashfn 14424 | . . 3 ⊢ ((𝑅 unitVec 𝐼) Fn 𝐼 → (♯‘(𝑅 unitVec 𝐼)) = (♯‘𝐼)) | |
29 | 27, 28 | syl 17 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → (♯‘(𝑅 unitVec 𝐼)) = (♯‘𝐼)) |
30 | 9, 16, 29 | 3eqtr2d 2786 | 1 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → (dim‘𝐹) = (♯‘𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ifcif 4548 ↦ cmpt 5249 ran crn 5701 Fn wfn 6568 –1-1→wf1 6570 ‘cfv 6573 (class class class)co 7448 ♯chash 14379 Basecbs 17258 0gc0g 17499 1rcur 20208 Ringcrg 20260 NzRingcnzr 20538 DivRingcdr 20751 LBasisclbs 21096 LVecclvec 21124 freeLMod cfrlm 21789 unitVec cuvc 21825 dimcldim 33611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-reg 9661 ax-inf2 9710 ax-ac2 10532 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-oi 9579 df-r1 9833 df-rank 9834 df-card 10008 df-acn 10011 df-ac 10185 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-xnn0 12626 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ocomp 17332 df-ds 17333 df-hom 17335 df-cco 17336 df-0g 17501 df-gsum 17502 df-prds 17507 df-pws 17509 df-mre 17644 df-mrc 17645 df-mri 17646 df-acs 17647 df-proset 18365 df-drs 18366 df-poset 18383 df-ipo 18598 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-ghm 19253 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-nzr 20539 df-subrg 20597 df-drng 20753 df-lmod 20882 df-lss 20953 df-lsp 20993 df-lmhm 21044 df-lbs 21097 df-lvec 21125 df-sra 21195 df-rgmod 21196 df-dsmm 21775 df-frlm 21790 df-uvc 21826 df-dim 33612 |
This theorem is referenced by: rrxdim 33627 matdim 33628 |
Copyright terms: Public domain | W3C validator |