Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frlmdim | Structured version Visualization version GIF version |
Description: Dimension of a free left module. (Contributed by Thierry Arnoux, 20-May-2023.) |
Ref | Expression |
---|---|
frlmdim.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
Ref | Expression |
---|---|
frlmdim | ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → (dim‘𝐹) = (♯‘𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmdim.f | . . . 4 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
2 | 1 | frlmlvec 20878 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → 𝐹 ∈ LVec) |
3 | drngring 19913 | . . . 4 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
4 | eqid 2738 | . . . . 5 ⊢ (𝑅 unitVec 𝐼) = (𝑅 unitVec 𝐼) | |
5 | eqid 2738 | . . . . 5 ⊢ (LBasis‘𝐹) = (LBasis‘𝐹) | |
6 | 1, 4, 5 | frlmlbs 20914 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹)) |
7 | 3, 6 | sylan 579 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹)) |
8 | 5 | dimval 31588 | . . 3 ⊢ ((𝐹 ∈ LVec ∧ ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹)) → (dim‘𝐹) = (♯‘ran (𝑅 unitVec 𝐼))) |
9 | 2, 7, 8 | syl2anc 583 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → (dim‘𝐹) = (♯‘ran (𝑅 unitVec 𝐼))) |
10 | simpr 484 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → 𝐼 ∈ 𝑉) | |
11 | drngnzr 20446 | . . . 4 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ NzRing) | |
12 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
13 | 4, 1, 12 | uvcf1 20909 | . . . 4 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑉) → (𝑅 unitVec 𝐼):𝐼–1-1→(Base‘𝐹)) |
14 | 11, 13 | sylan 579 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → (𝑅 unitVec 𝐼):𝐼–1-1→(Base‘𝐹)) |
15 | hashf1rn 13995 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ (𝑅 unitVec 𝐼):𝐼–1-1→(Base‘𝐹)) → (♯‘(𝑅 unitVec 𝐼)) = (♯‘ran (𝑅 unitVec 𝐼))) | |
16 | 10, 14, 15 | syl2anc 583 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → (♯‘(𝑅 unitVec 𝐼)) = (♯‘ran (𝑅 unitVec 𝐼))) |
17 | mptexg 7079 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, (1r‘𝑅), (0g‘𝑅))) ∈ V) | |
18 | 17 | ad2antlr 723 | . . . . . 6 ⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) ∧ 𝑗 ∈ 𝐼) → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, (1r‘𝑅), (0g‘𝑅))) ∈ V) |
19 | 18 | ralrimiva 3107 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → ∀𝑗 ∈ 𝐼 (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, (1r‘𝑅), (0g‘𝑅))) ∈ V) |
20 | eqid 2738 | . . . . . 6 ⊢ (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, (1r‘𝑅), (0g‘𝑅)))) = (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, (1r‘𝑅), (0g‘𝑅)))) | |
21 | 20 | fnmpt 6557 | . . . . 5 ⊢ (∀𝑗 ∈ 𝐼 (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, (1r‘𝑅), (0g‘𝑅))) ∈ V → (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, (1r‘𝑅), (0g‘𝑅)))) Fn 𝐼) |
22 | 19, 21 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, (1r‘𝑅), (0g‘𝑅)))) Fn 𝐼) |
23 | eqid 2738 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
24 | eqid 2738 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
25 | 4, 23, 24 | uvcfval 20901 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → (𝑅 unitVec 𝐼) = (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, (1r‘𝑅), (0g‘𝑅))))) |
26 | 25 | fneq1d 6510 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → ((𝑅 unitVec 𝐼) Fn 𝐼 ↔ (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, (1r‘𝑅), (0g‘𝑅)))) Fn 𝐼)) |
27 | 22, 26 | mpbird 256 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → (𝑅 unitVec 𝐼) Fn 𝐼) |
28 | hashfn 14018 | . . 3 ⊢ ((𝑅 unitVec 𝐼) Fn 𝐼 → (♯‘(𝑅 unitVec 𝐼)) = (♯‘𝐼)) | |
29 | 27, 28 | syl 17 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → (♯‘(𝑅 unitVec 𝐼)) = (♯‘𝐼)) |
30 | 9, 16, 29 | 3eqtr2d 2784 | 1 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → (dim‘𝐹) = (♯‘𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ifcif 4456 ↦ cmpt 5153 ran crn 5581 Fn wfn 6413 –1-1→wf1 6415 ‘cfv 6418 (class class class)co 7255 ♯chash 13972 Basecbs 16840 0gc0g 17067 1rcur 19652 Ringcrg 19698 DivRingcdr 19906 LBasisclbs 20251 LVecclvec 20279 NzRingcnzr 20441 freeLMod cfrlm 20863 unitVec cuvc 20899 dimcldim 31586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-reg 9281 ax-inf2 9329 ax-ac2 10150 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-oi 9199 df-r1 9453 df-rank 9454 df-card 9628 df-acn 9631 df-ac 9803 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-xnn0 12236 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ocomp 16909 df-ds 16910 df-hom 16912 df-cco 16913 df-0g 17069 df-gsum 17070 df-prds 17075 df-pws 17077 df-mre 17212 df-mrc 17213 df-mri 17214 df-acs 17215 df-proset 17928 df-drs 17929 df-poset 17946 df-ipo 18161 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-drng 19908 df-subrg 19937 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lmhm 20199 df-lbs 20252 df-lvec 20280 df-sra 20349 df-rgmod 20350 df-nzr 20442 df-dsmm 20849 df-frlm 20864 df-uvc 20900 df-dim 31587 |
This theorem is referenced by: rrxdim 31599 matdim 31600 |
Copyright terms: Public domain | W3C validator |