Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frlmdim | Structured version Visualization version GIF version |
Description: Dimension of a free left module. (Contributed by Thierry Arnoux, 20-May-2023.) |
Ref | Expression |
---|---|
frlmdim.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
Ref | Expression |
---|---|
frlmdim | ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → (dim‘𝐹) = (♯‘𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmdim.f | . . . 4 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
2 | 1 | frlmlvec 20996 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → 𝐹 ∈ LVec) |
3 | drngring 20026 | . . . 4 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
4 | eqid 2733 | . . . . 5 ⊢ (𝑅 unitVec 𝐼) = (𝑅 unitVec 𝐼) | |
5 | eqid 2733 | . . . . 5 ⊢ (LBasis‘𝐹) = (LBasis‘𝐹) | |
6 | 1, 4, 5 | frlmlbs 21032 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹)) |
7 | 3, 6 | sylan 579 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹)) |
8 | 5 | dimval 31714 | . . 3 ⊢ ((𝐹 ∈ LVec ∧ ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹)) → (dim‘𝐹) = (♯‘ran (𝑅 unitVec 𝐼))) |
9 | 2, 7, 8 | syl2anc 583 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → (dim‘𝐹) = (♯‘ran (𝑅 unitVec 𝐼))) |
10 | simpr 484 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → 𝐼 ∈ 𝑉) | |
11 | drngnzr 20561 | . . . 4 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ NzRing) | |
12 | eqid 2733 | . . . . 5 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
13 | 4, 1, 12 | uvcf1 21027 | . . . 4 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑉) → (𝑅 unitVec 𝐼):𝐼–1-1→(Base‘𝐹)) |
14 | 11, 13 | sylan 579 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → (𝑅 unitVec 𝐼):𝐼–1-1→(Base‘𝐹)) |
15 | hashf1rn 14095 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ (𝑅 unitVec 𝐼):𝐼–1-1→(Base‘𝐹)) → (♯‘(𝑅 unitVec 𝐼)) = (♯‘ran (𝑅 unitVec 𝐼))) | |
16 | 10, 14, 15 | syl2anc 583 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → (♯‘(𝑅 unitVec 𝐼)) = (♯‘ran (𝑅 unitVec 𝐼))) |
17 | mptexg 7117 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, (1r‘𝑅), (0g‘𝑅))) ∈ V) | |
18 | 17 | ad2antlr 723 | . . . . . 6 ⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) ∧ 𝑗 ∈ 𝐼) → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, (1r‘𝑅), (0g‘𝑅))) ∈ V) |
19 | 18 | ralrimiva 3137 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → ∀𝑗 ∈ 𝐼 (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, (1r‘𝑅), (0g‘𝑅))) ∈ V) |
20 | eqid 2733 | . . . . . 6 ⊢ (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, (1r‘𝑅), (0g‘𝑅)))) = (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, (1r‘𝑅), (0g‘𝑅)))) | |
21 | 20 | fnmpt 6591 | . . . . 5 ⊢ (∀𝑗 ∈ 𝐼 (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, (1r‘𝑅), (0g‘𝑅))) ∈ V → (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, (1r‘𝑅), (0g‘𝑅)))) Fn 𝐼) |
22 | 19, 21 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, (1r‘𝑅), (0g‘𝑅)))) Fn 𝐼) |
23 | eqid 2733 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
24 | eqid 2733 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
25 | 4, 23, 24 | uvcfval 21019 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → (𝑅 unitVec 𝐼) = (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, (1r‘𝑅), (0g‘𝑅))))) |
26 | 25 | fneq1d 6545 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → ((𝑅 unitVec 𝐼) Fn 𝐼 ↔ (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, (1r‘𝑅), (0g‘𝑅)))) Fn 𝐼)) |
27 | 22, 26 | mpbird 256 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → (𝑅 unitVec 𝐼) Fn 𝐼) |
28 | hashfn 14118 | . . 3 ⊢ ((𝑅 unitVec 𝐼) Fn 𝐼 → (♯‘(𝑅 unitVec 𝐼)) = (♯‘𝐼)) | |
29 | 27, 28 | syl 17 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → (♯‘(𝑅 unitVec 𝐼)) = (♯‘𝐼)) |
30 | 9, 16, 29 | 3eqtr2d 2779 | 1 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → (dim‘𝐹) = (♯‘𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2101 ∀wral 3059 Vcvv 3434 ifcif 4462 ↦ cmpt 5160 ran crn 5592 Fn wfn 6442 –1-1→wf1 6444 ‘cfv 6447 (class class class)co 7295 ♯chash 14072 Basecbs 16940 0gc0g 17178 1rcur 19765 Ringcrg 19811 DivRingcdr 20019 LBasisclbs 20364 LVecclvec 20392 NzRingcnzr 20556 freeLMod cfrlm 20981 unitVec cuvc 21017 dimcldim 31712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-reg 9379 ax-inf2 9427 ax-ac2 10247 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-tp 4569 df-op 4571 df-uni 4842 df-int 4883 df-iun 4929 df-iin 4930 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-se 5547 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-isom 6456 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-of 7553 df-om 7733 df-1st 7851 df-2nd 7852 df-supp 7998 df-tpos 8062 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-1o 8317 df-er 8518 df-map 8637 df-ixp 8706 df-en 8754 df-dom 8755 df-sdom 8756 df-fin 8757 df-fsupp 9157 df-sup 9229 df-oi 9297 df-r1 9550 df-rank 9551 df-card 9725 df-acn 9728 df-ac 9900 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-nn 12002 df-2 12064 df-3 12065 df-4 12066 df-5 12067 df-6 12068 df-7 12069 df-8 12070 df-9 12071 df-n0 12262 df-xnn0 12334 df-z 12348 df-dec 12466 df-uz 12611 df-fz 13268 df-fzo 13411 df-seq 13750 df-hash 14073 df-struct 16876 df-sets 16893 df-slot 16911 df-ndx 16923 df-base 16941 df-ress 16970 df-plusg 17003 df-mulr 17004 df-sca 17006 df-vsca 17007 df-ip 17008 df-tset 17009 df-ple 17010 df-ocomp 17011 df-ds 17012 df-hom 17014 df-cco 17015 df-0g 17180 df-gsum 17181 df-prds 17186 df-pws 17188 df-mre 17323 df-mrc 17324 df-mri 17325 df-acs 17326 df-proset 18041 df-drs 18042 df-poset 18059 df-ipo 18274 df-mgm 18354 df-sgrp 18403 df-mnd 18414 df-mhm 18458 df-submnd 18459 df-grp 18608 df-minusg 18609 df-sbg 18610 df-mulg 18729 df-subg 18780 df-ghm 18860 df-cntz 18951 df-cmn 19416 df-abl 19417 df-mgp 19749 df-ur 19766 df-ring 19813 df-oppr 19890 df-dvdsr 19911 df-unit 19912 df-invr 19942 df-drng 20021 df-subrg 20050 df-lmod 20153 df-lss 20222 df-lsp 20262 df-lmhm 20312 df-lbs 20365 df-lvec 20393 df-sra 20462 df-rgmod 20463 df-nzr 20557 df-dsmm 20967 df-frlm 20982 df-uvc 21018 df-dim 31713 |
This theorem is referenced by: rrxdim 31725 matdim 31726 |
Copyright terms: Public domain | W3C validator |