![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frlmdim | Structured version Visualization version GIF version |
Description: Dimension of a free left module. (Contributed by Thierry Arnoux, 20-May-2023.) |
Ref | Expression |
---|---|
frlmdim.f | β’ πΉ = (π freeLMod πΌ) |
Ref | Expression |
---|---|
frlmdim | β’ ((π β DivRing β§ πΌ β π) β (dimβπΉ) = (β―βπΌ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmdim.f | . . . 4 β’ πΉ = (π freeLMod πΌ) | |
2 | 1 | frlmlvec 21626 | . . 3 β’ ((π β DivRing β§ πΌ β π) β πΉ β LVec) |
3 | drngring 20586 | . . . 4 β’ (π β DivRing β π β Ring) | |
4 | eqid 2724 | . . . . 5 β’ (π unitVec πΌ) = (π unitVec πΌ) | |
5 | eqid 2724 | . . . . 5 β’ (LBasisβπΉ) = (LBasisβπΉ) | |
6 | 1, 4, 5 | frlmlbs 21662 | . . . 4 β’ ((π β Ring β§ πΌ β π) β ran (π unitVec πΌ) β (LBasisβπΉ)) |
7 | 3, 6 | sylan 579 | . . 3 β’ ((π β DivRing β§ πΌ β π) β ran (π unitVec πΌ) β (LBasisβπΉ)) |
8 | 5 | dimval 33167 | . . 3 β’ ((πΉ β LVec β§ ran (π unitVec πΌ) β (LBasisβπΉ)) β (dimβπΉ) = (β―βran (π unitVec πΌ))) |
9 | 2, 7, 8 | syl2anc 583 | . 2 β’ ((π β DivRing β§ πΌ β π) β (dimβπΉ) = (β―βran (π unitVec πΌ))) |
10 | simpr 484 | . . 3 β’ ((π β DivRing β§ πΌ β π) β πΌ β π) | |
11 | drngnzr 20599 | . . . 4 β’ (π β DivRing β π β NzRing) | |
12 | eqid 2724 | . . . . 5 β’ (BaseβπΉ) = (BaseβπΉ) | |
13 | 4, 1, 12 | uvcf1 21657 | . . . 4 β’ ((π β NzRing β§ πΌ β π) β (π unitVec πΌ):πΌβ1-1β(BaseβπΉ)) |
14 | 11, 13 | sylan 579 | . . 3 β’ ((π β DivRing β§ πΌ β π) β (π unitVec πΌ):πΌβ1-1β(BaseβπΉ)) |
15 | hashf1rn 14310 | . . 3 β’ ((πΌ β π β§ (π unitVec πΌ):πΌβ1-1β(BaseβπΉ)) β (β―β(π unitVec πΌ)) = (β―βran (π unitVec πΌ))) | |
16 | 10, 14, 15 | syl2anc 583 | . 2 β’ ((π β DivRing β§ πΌ β π) β (β―β(π unitVec πΌ)) = (β―βran (π unitVec πΌ))) |
17 | mptexg 7215 | . . . . . . 7 β’ (πΌ β π β (π β πΌ β¦ if(π = π, (1rβπ ), (0gβπ ))) β V) | |
18 | 17 | ad2antlr 724 | . . . . . 6 β’ (((π β DivRing β§ πΌ β π) β§ π β πΌ) β (π β πΌ β¦ if(π = π, (1rβπ ), (0gβπ ))) β V) |
19 | 18 | ralrimiva 3138 | . . . . 5 β’ ((π β DivRing β§ πΌ β π) β βπ β πΌ (π β πΌ β¦ if(π = π, (1rβπ ), (0gβπ ))) β V) |
20 | eqid 2724 | . . . . . 6 β’ (π β πΌ β¦ (π β πΌ β¦ if(π = π, (1rβπ ), (0gβπ )))) = (π β πΌ β¦ (π β πΌ β¦ if(π = π, (1rβπ ), (0gβπ )))) | |
21 | 20 | fnmpt 6681 | . . . . 5 β’ (βπ β πΌ (π β πΌ β¦ if(π = π, (1rβπ ), (0gβπ ))) β V β (π β πΌ β¦ (π β πΌ β¦ if(π = π, (1rβπ ), (0gβπ )))) Fn πΌ) |
22 | 19, 21 | syl 17 | . . . 4 β’ ((π β DivRing β§ πΌ β π) β (π β πΌ β¦ (π β πΌ β¦ if(π = π, (1rβπ ), (0gβπ )))) Fn πΌ) |
23 | eqid 2724 | . . . . . 6 β’ (1rβπ ) = (1rβπ ) | |
24 | eqid 2724 | . . . . . 6 β’ (0gβπ ) = (0gβπ ) | |
25 | 4, 23, 24 | uvcfval 21649 | . . . . 5 β’ ((π β DivRing β§ πΌ β π) β (π unitVec πΌ) = (π β πΌ β¦ (π β πΌ β¦ if(π = π, (1rβπ ), (0gβπ ))))) |
26 | 25 | fneq1d 6633 | . . . 4 β’ ((π β DivRing β§ πΌ β π) β ((π unitVec πΌ) Fn πΌ β (π β πΌ β¦ (π β πΌ β¦ if(π = π, (1rβπ ), (0gβπ )))) Fn πΌ)) |
27 | 22, 26 | mpbird 257 | . . 3 β’ ((π β DivRing β§ πΌ β π) β (π unitVec πΌ) Fn πΌ) |
28 | hashfn 14333 | . . 3 β’ ((π unitVec πΌ) Fn πΌ β (β―β(π unitVec πΌ)) = (β―βπΌ)) | |
29 | 27, 28 | syl 17 | . 2 β’ ((π β DivRing β§ πΌ β π) β (β―β(π unitVec πΌ)) = (β―βπΌ)) |
30 | 9, 16, 29 | 3eqtr2d 2770 | 1 β’ ((π β DivRing β§ πΌ β π) β (dimβπΉ) = (β―βπΌ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 βwral 3053 Vcvv 3466 ifcif 4521 β¦ cmpt 5222 ran crn 5668 Fn wfn 6529 β1-1βwf1 6531 βcfv 6534 (class class class)co 7402 β―chash 14288 Basecbs 17145 0gc0g 17386 1rcur 20078 Ringcrg 20130 NzRingcnzr 20406 DivRingcdr 20579 LBasisclbs 20914 LVecclvec 20942 freeLMod cfrlm 21611 unitVec cuvc 21647 dimcldim 33165 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-reg 9584 ax-inf2 9633 ax-ac2 10455 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-iin 4991 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-of 7664 df-om 7850 df-1st 7969 df-2nd 7970 df-supp 8142 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8700 df-map 8819 df-ixp 8889 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-fsupp 9359 df-sup 9434 df-oi 9502 df-r1 9756 df-rank 9757 df-card 9931 df-acn 9934 df-ac 10108 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-nn 12211 df-2 12273 df-3 12274 df-4 12275 df-5 12276 df-6 12277 df-7 12278 df-8 12279 df-9 12280 df-n0 12471 df-xnn0 12543 df-z 12557 df-dec 12676 df-uz 12821 df-fz 13483 df-fzo 13626 df-seq 13965 df-hash 14289 df-struct 17081 df-sets 17098 df-slot 17116 df-ndx 17128 df-base 17146 df-ress 17175 df-plusg 17211 df-mulr 17212 df-sca 17214 df-vsca 17215 df-ip 17216 df-tset 17217 df-ple 17218 df-ocomp 17219 df-ds 17220 df-hom 17222 df-cco 17223 df-0g 17388 df-gsum 17389 df-prds 17394 df-pws 17396 df-mre 17531 df-mrc 17532 df-mri 17533 df-acs 17534 df-proset 18252 df-drs 18253 df-poset 18270 df-ipo 18485 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-mhm 18705 df-submnd 18706 df-grp 18858 df-minusg 18859 df-sbg 18860 df-mulg 18988 df-subg 19042 df-ghm 19131 df-cntz 19225 df-cmn 19694 df-abl 19695 df-mgp 20032 df-rng 20050 df-ur 20079 df-ring 20132 df-oppr 20228 df-dvdsr 20251 df-unit 20252 df-invr 20282 df-nzr 20407 df-subrg 20463 df-drng 20581 df-lmod 20700 df-lss 20771 df-lsp 20811 df-lmhm 20862 df-lbs 20915 df-lvec 20943 df-sra 21013 df-rgmod 21014 df-dsmm 21597 df-frlm 21612 df-uvc 21648 df-dim 33166 |
This theorem is referenced by: rrxdim 33181 matdim 33182 |
Copyright terms: Public domain | W3C validator |