MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcff Structured version   Visualization version   GIF version

Theorem uvcff 20455
Description: Domain and range of the unit vector generator; ring condition required to be sure 1 and 0 are actually in the ring. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
uvcff.u 𝑈 = (𝑅 unitVec 𝐼)
uvcff.y 𝑌 = (𝑅 freeLMod 𝐼)
uvcff.b 𝐵 = (Base‘𝑌)
Assertion
Ref Expression
uvcff ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑈:𝐼𝐵)

Proof of Theorem uvcff
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2799 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2799 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
31, 2ringidcl 18884 . . . . . . . 8 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
4 eqid 2799 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
51, 4ring0cl 18885 . . . . . . . 8 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
63, 5ifcld 4322 . . . . . . 7 (𝑅 ∈ Ring → if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
76ad3antrrr 722 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
87fmpttd 6611 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))):𝐼⟶(Base‘𝑅))
9 fvex 6424 . . . . . . 7 (Base‘𝑅) ∈ V
10 elmapg 8108 . . . . . . 7 (((Base‘𝑅) ∈ V ∧ 𝐼𝑊) → ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑𝑚 𝐼) ↔ (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))):𝐼⟶(Base‘𝑅)))
119, 10mpan 682 . . . . . 6 (𝐼𝑊 → ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑𝑚 𝐼) ↔ (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))):𝐼⟶(Base‘𝑅)))
1211ad2antlr 719 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑𝑚 𝐼) ↔ (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))):𝐼⟶(Base‘𝑅)))
138, 12mpbird 249 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑𝑚 𝐼))
14 mptexg 6713 . . . . . 6 (𝐼𝑊 → (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ V)
1514ad2antlr 719 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ V)
16 funmpt 6139 . . . . . 6 Fun (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))
1716a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → Fun (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))))
18 fvex 6424 . . . . . 6 (0g𝑅) ∈ V
1918a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (0g𝑅) ∈ V)
20 snfi 8280 . . . . . 6 {𝑖} ∈ Fin
2120a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → {𝑖} ∈ Fin)
22 eldifsni 4510 . . . . . . . . 9 (𝑗 ∈ (𝐼 ∖ {𝑖}) → 𝑗𝑖)
2322adantl 474 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) ∧ 𝑗 ∈ (𝐼 ∖ {𝑖})) → 𝑗𝑖)
2423neneqd 2976 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) ∧ 𝑗 ∈ (𝐼 ∖ {𝑖})) → ¬ 𝑗 = 𝑖)
2524iffalsed 4288 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) ∧ 𝑗 ∈ (𝐼 ∖ {𝑖})) → if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)) = (0g𝑅))
26 simplr 786 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → 𝐼𝑊)
2725, 26suppss2 7567 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) supp (0g𝑅)) ⊆ {𝑖})
28 suppssfifsupp 8532 . . . . 5 ((((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ V ∧ Fun (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∧ (0g𝑅) ∈ V) ∧ ({𝑖} ∈ Fin ∧ ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) supp (0g𝑅)) ⊆ {𝑖})) → (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) finSupp (0g𝑅))
2915, 17, 19, 21, 27, 28syl32anc 1498 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) finSupp (0g𝑅))
30 uvcff.y . . . . . 6 𝑌 = (𝑅 freeLMod 𝐼)
31 uvcff.b . . . . . 6 𝐵 = (Base‘𝑌)
3230, 1, 4, 31frlmelbas 20425 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ 𝐵 ↔ ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑𝑚 𝐼) ∧ (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) finSupp (0g𝑅))))
3332adantr 473 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ 𝐵 ↔ ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑𝑚 𝐼) ∧ (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) finSupp (0g𝑅))))
3413, 29, 33mpbir2and 705 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ 𝐵)
3534fmpttd 6611 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝑖𝐼 ↦ (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))):𝐼𝐵)
36 uvcff.u . . . 4 𝑈 = (𝑅 unitVec 𝐼)
3736, 2, 4uvcfval 20448 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑈 = (𝑖𝐼 ↦ (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))))
3837feq1d 6241 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝑈:𝐼𝐵 ↔ (𝑖𝐼 ↦ (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))):𝐼𝐵))
3935, 38mpbird 249 1 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑈:𝐼𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wne 2971  Vcvv 3385  cdif 3766  wss 3769  ifcif 4277  {csn 4368   class class class wbr 4843  cmpt 4922  Fun wfun 6095  wf 6097  cfv 6101  (class class class)co 6878   supp csupp 7532  𝑚 cmap 8095  Fincfn 8195   finSupp cfsupp 8517  Basecbs 16184  0gc0g 16415  1rcur 18817  Ringcrg 18863   freeLMod cfrlm 20415   unitVec cuvc 20446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-supp 7533  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-map 8097  df-ixp 8149  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-fsupp 8518  df-sup 8590  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-dec 11784  df-uz 11931  df-fz 12581  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-plusg 16280  df-mulr 16281  df-sca 16283  df-vsca 16284  df-ip 16285  df-tset 16286  df-ple 16287  df-ds 16289  df-hom 16291  df-cco 16292  df-0g 16417  df-prds 16423  df-pws 16425  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-grp 17741  df-mgp 18806  df-ur 18818  df-ring 18865  df-sra 19495  df-rgmod 19496  df-dsmm 20401  df-frlm 20416  df-uvc 20447
This theorem is referenced by:  uvcf1  20456  uvcresum  20457  frlmssuvc1  20458  frlmssuvc2  20459  frlmsslsp  20460  frlmlbs  20461  frlmup2  20463  frlmup3  20464  frlmup4  20465  lindsdom  33892  matunitlindflem2  33895  aacllem  43349
  Copyright terms: Public domain W3C validator