| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uvcff | Structured version Visualization version GIF version | ||
| Description: Domain and codomain of the unit vector generator; ring condition required to be sure 1 and 0 are actually in the ring. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.) |
| Ref | Expression |
|---|---|
| uvcff.u | ⊢ 𝑈 = (𝑅 unitVec 𝐼) |
| uvcff.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
| uvcff.b | ⊢ 𝐵 = (Base‘𝑌) |
| Ref | Expression |
|---|---|
| uvcff | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uvcff.u | . . 3 ⊢ 𝑈 = (𝑅 unitVec 𝐼) | |
| 2 | eqid 2735 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 3 | eqid 2735 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 4 | 1, 2, 3 | uvcfval 21744 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑈 = (𝑖 ∈ 𝐼 ↦ (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))))) |
| 5 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 6 | 5, 2 | ringidcl 20225 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 7 | 5, 3 | ring0cl 20227 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 8 | 6, 7 | ifcld 4547 | . . . . . 6 ⊢ (𝑅 ∈ Ring → if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
| 9 | 8 | ad3antrrr 730 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
| 10 | 9 | fmpttd 7105 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))):𝐼⟶(Base‘𝑅)) |
| 11 | fvex 6889 | . . . . . 6 ⊢ (Base‘𝑅) ∈ V | |
| 12 | elmapg 8853 | . . . . . 6 ⊢ (((Base‘𝑅) ∈ V ∧ 𝐼 ∈ 𝑊) → ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))):𝐼⟶(Base‘𝑅))) | |
| 13 | 11, 12 | mpan 690 | . . . . 5 ⊢ (𝐼 ∈ 𝑊 → ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))):𝐼⟶(Base‘𝑅))) |
| 14 | 13 | ad2antlr 727 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))):𝐼⟶(Base‘𝑅))) |
| 15 | 10, 14 | mpbird 257 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼)) |
| 16 | mptexg 7213 | . . . . 5 ⊢ (𝐼 ∈ 𝑊 → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ V) | |
| 17 | 16 | ad2antlr 727 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ V) |
| 18 | funmpt 6574 | . . . . 5 ⊢ Fun (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) | |
| 19 | 18 | a1i 11 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → Fun (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅)))) |
| 20 | fvex 6889 | . . . . 5 ⊢ (0g‘𝑅) ∈ V | |
| 21 | 20 | a1i 11 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (0g‘𝑅) ∈ V) |
| 22 | snfi 9057 | . . . . 5 ⊢ {𝑖} ∈ Fin | |
| 23 | 22 | a1i 11 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → {𝑖} ∈ Fin) |
| 24 | eldifsni 4766 | . . . . . . . 8 ⊢ (𝑗 ∈ (𝐼 ∖ {𝑖}) → 𝑗 ≠ 𝑖) | |
| 25 | 24 | adantl 481 | . . . . . . 7 ⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ (𝐼 ∖ {𝑖})) → 𝑗 ≠ 𝑖) |
| 26 | 25 | neneqd 2937 | . . . . . 6 ⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ (𝐼 ∖ {𝑖})) → ¬ 𝑗 = 𝑖) |
| 27 | 26 | iffalsed 4511 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ (𝐼 ∖ {𝑖})) → if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) |
| 28 | simplr 768 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → 𝐼 ∈ 𝑊) | |
| 29 | 27, 28 | suppss2 8199 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) supp (0g‘𝑅)) ⊆ {𝑖}) |
| 30 | suppssfifsupp 9392 | . . . 4 ⊢ ((((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ V ∧ Fun (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∧ (0g‘𝑅) ∈ V) ∧ ({𝑖} ∈ Fin ∧ ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) supp (0g‘𝑅)) ⊆ {𝑖})) → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) finSupp (0g‘𝑅)) | |
| 31 | 17, 19, 21, 23, 29, 30 | syl32anc 1380 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) finSupp (0g‘𝑅)) |
| 32 | uvcff.y | . . . . 5 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
| 33 | uvcff.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑌) | |
| 34 | 32, 5, 3, 33 | frlmelbas 21716 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ 𝐵 ↔ ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ∧ (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) finSupp (0g‘𝑅)))) |
| 35 | 34 | adantr 480 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ 𝐵 ↔ ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ∧ (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) finSupp (0g‘𝑅)))) |
| 36 | 15, 31, 35 | mpbir2and 713 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ 𝐵) |
| 37 | 4, 36 | fmpt3d 7106 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 Vcvv 3459 ∖ cdif 3923 ⊆ wss 3926 ifcif 4500 {csn 4601 class class class wbr 5119 ↦ cmpt 5201 Fun wfun 6525 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 supp csupp 8159 ↑m cmap 8840 Fincfn 8959 finSupp cfsupp 9373 Basecbs 17228 0gc0g 17453 1rcur 20141 Ringcrg 20193 freeLMod cfrlm 21706 unitVec cuvc 21742 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-hom 17295 df-cco 17296 df-0g 17455 df-prds 17461 df-pws 17463 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-mgp 20101 df-ur 20142 df-ring 20195 df-sra 21131 df-rgmod 21132 df-dsmm 21692 df-frlm 21707 df-uvc 21743 |
| This theorem is referenced by: uvcf1 21752 uvcresum 21753 frlmssuvc1 21754 frlmssuvc2 21755 frlmsslsp 21756 frlmlbs 21757 frlmup2 21759 frlmup3 21760 frlmup4 21761 lindsdom 37638 matunitlindflem2 37641 uvccl 42564 aacllem 49665 |
| Copyright terms: Public domain | W3C validator |