MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcff Structured version   Visualization version   GIF version

Theorem uvcff 21213
Description: Domain and codomain of the unit vector generator; ring condition required to be sure 1 and 0 are actually in the ring. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
uvcff.u 𝑈 = (𝑅 unitVec 𝐼)
uvcff.y 𝑌 = (𝑅 freeLMod 𝐼)
uvcff.b 𝐵 = (Base‘𝑌)
Assertion
Ref Expression
uvcff ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑈:𝐼𝐵)

Proof of Theorem uvcff
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uvcff.u . . 3 𝑈 = (𝑅 unitVec 𝐼)
2 eqid 2733 . . 3 (1r𝑅) = (1r𝑅)
3 eqid 2733 . . 3 (0g𝑅) = (0g𝑅)
41, 2, 3uvcfval 21206 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑈 = (𝑖𝐼 ↦ (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))))
5 eqid 2733 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
65, 2ringidcl 19994 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
75, 3ring0cl 19995 . . . . . . 7 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
86, 7ifcld 4533 . . . . . 6 (𝑅 ∈ Ring → if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
98ad3antrrr 729 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
109fmpttd 7064 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))):𝐼⟶(Base‘𝑅))
11 fvex 6856 . . . . . 6 (Base‘𝑅) ∈ V
12 elmapg 8781 . . . . . 6 (((Base‘𝑅) ∈ V ∧ 𝐼𝑊) → ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))):𝐼⟶(Base‘𝑅)))
1311, 12mpan 689 . . . . 5 (𝐼𝑊 → ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))):𝐼⟶(Base‘𝑅)))
1413ad2antlr 726 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))):𝐼⟶(Base‘𝑅)))
1510, 14mpbird 257 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼))
16 mptexg 7172 . . . . 5 (𝐼𝑊 → (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ V)
1716ad2antlr 726 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ V)
18 funmpt 6540 . . . . 5 Fun (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))
1918a1i 11 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → Fun (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))))
20 fvex 6856 . . . . 5 (0g𝑅) ∈ V
2120a1i 11 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (0g𝑅) ∈ V)
22 snfi 8991 . . . . 5 {𝑖} ∈ Fin
2322a1i 11 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → {𝑖} ∈ Fin)
24 eldifsni 4751 . . . . . . . 8 (𝑗 ∈ (𝐼 ∖ {𝑖}) → 𝑗𝑖)
2524adantl 483 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) ∧ 𝑗 ∈ (𝐼 ∖ {𝑖})) → 𝑗𝑖)
2625neneqd 2945 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) ∧ 𝑗 ∈ (𝐼 ∖ {𝑖})) → ¬ 𝑗 = 𝑖)
2726iffalsed 4498 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) ∧ 𝑗 ∈ (𝐼 ∖ {𝑖})) → if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)) = (0g𝑅))
28 simplr 768 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → 𝐼𝑊)
2927, 28suppss2 8132 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) supp (0g𝑅)) ⊆ {𝑖})
30 suppssfifsupp 9325 . . . 4 ((((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ V ∧ Fun (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∧ (0g𝑅) ∈ V) ∧ ({𝑖} ∈ Fin ∧ ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) supp (0g𝑅)) ⊆ {𝑖})) → (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) finSupp (0g𝑅))
3117, 19, 21, 23, 29, 30syl32anc 1379 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) finSupp (0g𝑅))
32 uvcff.y . . . . 5 𝑌 = (𝑅 freeLMod 𝐼)
33 uvcff.b . . . . 5 𝐵 = (Base‘𝑌)
3432, 5, 3, 33frlmelbas 21178 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ 𝐵 ↔ ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ∧ (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) finSupp (0g𝑅))))
3534adantr 482 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ 𝐵 ↔ ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ∧ (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) finSupp (0g𝑅))))
3615, 31, 35mpbir2and 712 . 2 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ 𝐵)
374, 36fmpt3d 7065 1 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑈:𝐼𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2940  Vcvv 3444  cdif 3908  wss 3911  ifcif 4487  {csn 4587   class class class wbr 5106  cmpt 5189  Fun wfun 6491  wf 6493  cfv 6497  (class class class)co 7358   supp csupp 8093  m cmap 8768  Fincfn 8886   finSupp cfsupp 9308  Basecbs 17088  0gc0g 17326  1rcur 19918  Ringcrg 19969   freeLMod cfrlm 21168   unitVec cuvc 21204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-tp 4592  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-supp 8094  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8651  df-map 8770  df-ixp 8839  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-fsupp 9309  df-sup 9383  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-2 12221  df-3 12222  df-4 12223  df-5 12224  df-6 12225  df-7 12226  df-8 12227  df-9 12228  df-n0 12419  df-z 12505  df-dec 12624  df-uz 12769  df-fz 13431  df-struct 17024  df-sets 17041  df-slot 17059  df-ndx 17071  df-base 17089  df-ress 17118  df-plusg 17151  df-mulr 17152  df-sca 17154  df-vsca 17155  df-ip 17156  df-tset 17157  df-ple 17158  df-ds 17160  df-hom 17162  df-cco 17163  df-0g 17328  df-prds 17334  df-pws 17336  df-mgm 18502  df-sgrp 18551  df-mnd 18562  df-grp 18756  df-mgp 19902  df-ur 19919  df-ring 19971  df-sra 20649  df-rgmod 20650  df-dsmm 21154  df-frlm 21169  df-uvc 21205
This theorem is referenced by:  uvcf1  21214  uvcresum  21215  frlmssuvc1  21216  frlmssuvc2  21217  frlmsslsp  21218  frlmlbs  21219  frlmup2  21221  frlmup3  21222  frlmup4  21223  lindsdom  36118  matunitlindflem2  36121  uvccl  40772  aacllem  47334
  Copyright terms: Public domain W3C validator