| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uvcff | Structured version Visualization version GIF version | ||
| Description: Domain and codomain of the unit vector generator; ring condition required to be sure 1 and 0 are actually in the ring. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.) |
| Ref | Expression |
|---|---|
| uvcff.u | ⊢ 𝑈 = (𝑅 unitVec 𝐼) |
| uvcff.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
| uvcff.b | ⊢ 𝐵 = (Base‘𝑌) |
| Ref | Expression |
|---|---|
| uvcff | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uvcff.u | . . 3 ⊢ 𝑈 = (𝑅 unitVec 𝐼) | |
| 2 | eqid 2733 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 3 | eqid 2733 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 4 | 1, 2, 3 | uvcfval 21730 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑈 = (𝑖 ∈ 𝐼 ↦ (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))))) |
| 5 | eqid 2733 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 6 | 5, 2 | ringidcl 20191 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 7 | 5, 3 | ring0cl 20193 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 8 | 6, 7 | ifcld 4523 | . . . . . 6 ⊢ (𝑅 ∈ Ring → if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
| 9 | 8 | ad3antrrr 730 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
| 10 | 9 | fmpttd 7057 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))):𝐼⟶(Base‘𝑅)) |
| 11 | fvex 6844 | . . . . . 6 ⊢ (Base‘𝑅) ∈ V | |
| 12 | elmapg 8772 | . . . . . 6 ⊢ (((Base‘𝑅) ∈ V ∧ 𝐼 ∈ 𝑊) → ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))):𝐼⟶(Base‘𝑅))) | |
| 13 | 11, 12 | mpan 690 | . . . . 5 ⊢ (𝐼 ∈ 𝑊 → ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))):𝐼⟶(Base‘𝑅))) |
| 14 | 13 | ad2antlr 727 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))):𝐼⟶(Base‘𝑅))) |
| 15 | 10, 14 | mpbird 257 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼)) |
| 16 | mptexg 7164 | . . . . 5 ⊢ (𝐼 ∈ 𝑊 → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ V) | |
| 17 | 16 | ad2antlr 727 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ V) |
| 18 | funmpt 6527 | . . . . 5 ⊢ Fun (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) | |
| 19 | 18 | a1i 11 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → Fun (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅)))) |
| 20 | fvex 6844 | . . . . 5 ⊢ (0g‘𝑅) ∈ V | |
| 21 | 20 | a1i 11 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (0g‘𝑅) ∈ V) |
| 22 | snfi 8976 | . . . . 5 ⊢ {𝑖} ∈ Fin | |
| 23 | 22 | a1i 11 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → {𝑖} ∈ Fin) |
| 24 | eldifsni 4743 | . . . . . . . 8 ⊢ (𝑗 ∈ (𝐼 ∖ {𝑖}) → 𝑗 ≠ 𝑖) | |
| 25 | 24 | adantl 481 | . . . . . . 7 ⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ (𝐼 ∖ {𝑖})) → 𝑗 ≠ 𝑖) |
| 26 | 25 | neneqd 2934 | . . . . . 6 ⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ (𝐼 ∖ {𝑖})) → ¬ 𝑗 = 𝑖) |
| 27 | 26 | iffalsed 4487 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ (𝐼 ∖ {𝑖})) → if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) |
| 28 | simplr 768 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → 𝐼 ∈ 𝑊) | |
| 29 | 27, 28 | suppss2 8139 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) supp (0g‘𝑅)) ⊆ {𝑖}) |
| 30 | suppssfifsupp 9275 | . . . 4 ⊢ ((((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ V ∧ Fun (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∧ (0g‘𝑅) ∈ V) ∧ ({𝑖} ∈ Fin ∧ ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) supp (0g‘𝑅)) ⊆ {𝑖})) → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) finSupp (0g‘𝑅)) | |
| 31 | 17, 19, 21, 23, 29, 30 | syl32anc 1380 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) finSupp (0g‘𝑅)) |
| 32 | uvcff.y | . . . . 5 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
| 33 | uvcff.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑌) | |
| 34 | 32, 5, 3, 33 | frlmelbas 21702 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ 𝐵 ↔ ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ∧ (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) finSupp (0g‘𝑅)))) |
| 35 | 34 | adantr 480 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ 𝐵 ↔ ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ∧ (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) finSupp (0g‘𝑅)))) |
| 36 | 15, 31, 35 | mpbir2and 713 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ 𝐵) |
| 37 | 4, 36 | fmpt3d 7058 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 Vcvv 3437 ∖ cdif 3895 ⊆ wss 3898 ifcif 4476 {csn 4577 class class class wbr 5095 ↦ cmpt 5176 Fun wfun 6483 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 supp csupp 8099 ↑m cmap 8759 Fincfn 8879 finSupp cfsupp 9256 Basecbs 17127 0gc0g 17350 1rcur 20107 Ringcrg 20159 freeLMod cfrlm 21692 unitVec cuvc 21728 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-sup 9337 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-fz 13415 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ds 17190 df-hom 17192 df-cco 17193 df-0g 17352 df-prds 17358 df-pws 17360 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-grp 18857 df-mgp 20067 df-ur 20108 df-ring 20161 df-sra 21116 df-rgmod 21117 df-dsmm 21678 df-frlm 21693 df-uvc 21729 |
| This theorem is referenced by: uvcf1 21738 uvcresum 21739 frlmssuvc1 21740 frlmssuvc2 21741 frlmsslsp 21742 frlmlbs 21743 frlmup2 21745 frlmup3 21746 frlmup4 21747 lindsdom 37727 matunitlindflem2 37730 uvccl 42711 aacllem 49962 |
| Copyright terms: Public domain | W3C validator |