![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uvcff | Structured version Visualization version GIF version |
Description: Domain and codomain of the unit vector generator; ring condition required to be sure 1 and 0 are actually in the ring. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.) |
Ref | Expression |
---|---|
uvcff.u | ⊢ 𝑈 = (𝑅 unitVec 𝐼) |
uvcff.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
uvcff.b | ⊢ 𝐵 = (Base‘𝑌) |
Ref | Expression |
---|---|
uvcff | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uvcff.u | . . 3 ⊢ 𝑈 = (𝑅 unitVec 𝐼) | |
2 | eqid 2735 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
3 | eqid 2735 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
4 | 1, 2, 3 | uvcfval 21822 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑈 = (𝑖 ∈ 𝐼 ↦ (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))))) |
5 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
6 | 5, 2 | ringidcl 20280 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
7 | 5, 3 | ring0cl 20281 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (0g‘𝑅) ∈ (Base‘𝑅)) |
8 | 6, 7 | ifcld 4577 | . . . . . 6 ⊢ (𝑅 ∈ Ring → if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
9 | 8 | ad3antrrr 730 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
10 | 9 | fmpttd 7135 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))):𝐼⟶(Base‘𝑅)) |
11 | fvex 6920 | . . . . . 6 ⊢ (Base‘𝑅) ∈ V | |
12 | elmapg 8878 | . . . . . 6 ⊢ (((Base‘𝑅) ∈ V ∧ 𝐼 ∈ 𝑊) → ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))):𝐼⟶(Base‘𝑅))) | |
13 | 11, 12 | mpan 690 | . . . . 5 ⊢ (𝐼 ∈ 𝑊 → ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))):𝐼⟶(Base‘𝑅))) |
14 | 13 | ad2antlr 727 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))):𝐼⟶(Base‘𝑅))) |
15 | 10, 14 | mpbird 257 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼)) |
16 | mptexg 7241 | . . . . 5 ⊢ (𝐼 ∈ 𝑊 → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ V) | |
17 | 16 | ad2antlr 727 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ V) |
18 | funmpt 6606 | . . . . 5 ⊢ Fun (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) | |
19 | 18 | a1i 11 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → Fun (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅)))) |
20 | fvex 6920 | . . . . 5 ⊢ (0g‘𝑅) ∈ V | |
21 | 20 | a1i 11 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (0g‘𝑅) ∈ V) |
22 | snfi 9082 | . . . . 5 ⊢ {𝑖} ∈ Fin | |
23 | 22 | a1i 11 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → {𝑖} ∈ Fin) |
24 | eldifsni 4795 | . . . . . . . 8 ⊢ (𝑗 ∈ (𝐼 ∖ {𝑖}) → 𝑗 ≠ 𝑖) | |
25 | 24 | adantl 481 | . . . . . . 7 ⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ (𝐼 ∖ {𝑖})) → 𝑗 ≠ 𝑖) |
26 | 25 | neneqd 2943 | . . . . . 6 ⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ (𝐼 ∖ {𝑖})) → ¬ 𝑗 = 𝑖) |
27 | 26 | iffalsed 4542 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ (𝐼 ∖ {𝑖})) → if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) |
28 | simplr 769 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → 𝐼 ∈ 𝑊) | |
29 | 27, 28 | suppss2 8224 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) supp (0g‘𝑅)) ⊆ {𝑖}) |
30 | suppssfifsupp 9418 | . . . 4 ⊢ ((((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ V ∧ Fun (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∧ (0g‘𝑅) ∈ V) ∧ ({𝑖} ∈ Fin ∧ ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) supp (0g‘𝑅)) ⊆ {𝑖})) → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) finSupp (0g‘𝑅)) | |
31 | 17, 19, 21, 23, 29, 30 | syl32anc 1377 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) finSupp (0g‘𝑅)) |
32 | uvcff.y | . . . . 5 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
33 | uvcff.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑌) | |
34 | 32, 5, 3, 33 | frlmelbas 21794 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ 𝐵 ↔ ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ∧ (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) finSupp (0g‘𝑅)))) |
35 | 34 | adantr 480 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ 𝐵 ↔ ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ∧ (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) finSupp (0g‘𝑅)))) |
36 | 15, 31, 35 | mpbir2and 713 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ 𝐵) |
37 | 4, 36 | fmpt3d 7136 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 Vcvv 3478 ∖ cdif 3960 ⊆ wss 3963 ifcif 4531 {csn 4631 class class class wbr 5148 ↦ cmpt 5231 Fun wfun 6557 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 supp csupp 8184 ↑m cmap 8865 Fincfn 8984 finSupp cfsupp 9399 Basecbs 17245 0gc0g 17486 1rcur 20199 Ringcrg 20251 freeLMod cfrlm 21784 unitVec cuvc 21820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17488 df-prds 17494 df-pws 17496 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-mgp 20153 df-ur 20200 df-ring 20253 df-sra 21190 df-rgmod 21191 df-dsmm 21770 df-frlm 21785 df-uvc 21821 |
This theorem is referenced by: uvcf1 21830 uvcresum 21831 frlmssuvc1 21832 frlmssuvc2 21833 frlmsslsp 21834 frlmlbs 21835 frlmup2 21837 frlmup3 21838 frlmup4 21839 lindsdom 37601 matunitlindflem2 37604 uvccl 42528 aacllem 49032 |
Copyright terms: Public domain | W3C validator |