Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uvcff | Structured version Visualization version GIF version |
Description: Domain and codomain of the unit vector generator; ring condition required to be sure 1 and 0 are actually in the ring. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.) |
Ref | Expression |
---|---|
uvcff.u | ⊢ 𝑈 = (𝑅 unitVec 𝐼) |
uvcff.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
uvcff.b | ⊢ 𝐵 = (Base‘𝑌) |
Ref | Expression |
---|---|
uvcff | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uvcff.u | . . 3 ⊢ 𝑈 = (𝑅 unitVec 𝐼) | |
2 | eqid 2737 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
3 | eqid 2737 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
4 | 1, 2, 3 | uvcfval 21063 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑈 = (𝑖 ∈ 𝐼 ↦ (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))))) |
5 | eqid 2737 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
6 | 5, 2 | ringidcl 19875 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
7 | 5, 3 | ring0cl 19876 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (0g‘𝑅) ∈ (Base‘𝑅)) |
8 | 6, 7 | ifcld 4517 | . . . . . 6 ⊢ (𝑅 ∈ Ring → if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
9 | 8 | ad3antrrr 727 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
10 | 9 | fmpttd 7028 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))):𝐼⟶(Base‘𝑅)) |
11 | fvex 6824 | . . . . . 6 ⊢ (Base‘𝑅) ∈ V | |
12 | elmapg 8676 | . . . . . 6 ⊢ (((Base‘𝑅) ∈ V ∧ 𝐼 ∈ 𝑊) → ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))):𝐼⟶(Base‘𝑅))) | |
13 | 11, 12 | mpan 687 | . . . . 5 ⊢ (𝐼 ∈ 𝑊 → ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))):𝐼⟶(Base‘𝑅))) |
14 | 13 | ad2antlr 724 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))):𝐼⟶(Base‘𝑅))) |
15 | 10, 14 | mpbird 256 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼)) |
16 | mptexg 7136 | . . . . 5 ⊢ (𝐼 ∈ 𝑊 → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ V) | |
17 | 16 | ad2antlr 724 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ V) |
18 | funmpt 6508 | . . . . 5 ⊢ Fun (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) | |
19 | 18 | a1i 11 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → Fun (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅)))) |
20 | fvex 6824 | . . . . 5 ⊢ (0g‘𝑅) ∈ V | |
21 | 20 | a1i 11 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (0g‘𝑅) ∈ V) |
22 | snfi 8886 | . . . . 5 ⊢ {𝑖} ∈ Fin | |
23 | 22 | a1i 11 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → {𝑖} ∈ Fin) |
24 | eldifsni 4735 | . . . . . . . 8 ⊢ (𝑗 ∈ (𝐼 ∖ {𝑖}) → 𝑗 ≠ 𝑖) | |
25 | 24 | adantl 482 | . . . . . . 7 ⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ (𝐼 ∖ {𝑖})) → 𝑗 ≠ 𝑖) |
26 | 25 | neneqd 2946 | . . . . . 6 ⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ (𝐼 ∖ {𝑖})) → ¬ 𝑗 = 𝑖) |
27 | 26 | iffalsed 4482 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ (𝐼 ∖ {𝑖})) → if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) |
28 | simplr 766 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → 𝐼 ∈ 𝑊) | |
29 | 27, 28 | suppss2 8063 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) supp (0g‘𝑅)) ⊆ {𝑖}) |
30 | suppssfifsupp 9213 | . . . 4 ⊢ ((((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ V ∧ Fun (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∧ (0g‘𝑅) ∈ V) ∧ ({𝑖} ∈ Fin ∧ ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) supp (0g‘𝑅)) ⊆ {𝑖})) → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) finSupp (0g‘𝑅)) | |
31 | 17, 19, 21, 23, 29, 30 | syl32anc 1377 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) finSupp (0g‘𝑅)) |
32 | uvcff.y | . . . . 5 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
33 | uvcff.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑌) | |
34 | 32, 5, 3, 33 | frlmelbas 21035 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ 𝐵 ↔ ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ∧ (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) finSupp (0g‘𝑅)))) |
35 | 34 | adantr 481 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ 𝐵 ↔ ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ∧ (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) finSupp (0g‘𝑅)))) |
36 | 15, 31, 35 | mpbir2and 710 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ 𝐵) |
37 | 4, 36 | fmpt3d 7029 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 Vcvv 3441 ∖ cdif 3894 ⊆ wss 3897 ifcif 4471 {csn 4571 class class class wbr 5087 ↦ cmpt 5170 Fun wfun 6459 ⟶wf 6461 ‘cfv 6465 (class class class)co 7315 supp csupp 8024 ↑m cmap 8663 Fincfn 8781 finSupp cfsupp 9198 Basecbs 16982 0gc0g 17220 1rcur 19805 Ringcrg 19851 freeLMod cfrlm 21025 unitVec cuvc 21061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-1st 7876 df-2nd 7877 df-supp 8025 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-1o 8344 df-er 8546 df-map 8665 df-ixp 8734 df-en 8782 df-dom 8783 df-sdom 8784 df-fin 8785 df-fsupp 9199 df-sup 9271 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-nn 12047 df-2 12109 df-3 12110 df-4 12111 df-5 12112 df-6 12113 df-7 12114 df-8 12115 df-9 12116 df-n0 12307 df-z 12393 df-dec 12511 df-uz 12656 df-fz 13313 df-struct 16918 df-sets 16935 df-slot 16953 df-ndx 16965 df-base 16983 df-ress 17012 df-plusg 17045 df-mulr 17046 df-sca 17048 df-vsca 17049 df-ip 17050 df-tset 17051 df-ple 17052 df-ds 17054 df-hom 17056 df-cco 17057 df-0g 17222 df-prds 17228 df-pws 17230 df-mgm 18396 df-sgrp 18445 df-mnd 18456 df-grp 18649 df-mgp 19789 df-ur 19806 df-ring 19853 df-sra 20506 df-rgmod 20507 df-dsmm 21011 df-frlm 21026 df-uvc 21062 |
This theorem is referenced by: uvcf1 21071 uvcresum 21072 frlmssuvc1 21073 frlmssuvc2 21074 frlmsslsp 21075 frlmlbs 21076 frlmup2 21078 frlmup3 21079 frlmup4 21080 lindsdom 35827 matunitlindflem2 35830 uvccl 40467 aacllem 46757 |
Copyright terms: Public domain | W3C validator |