MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcff Structured version   Visualization version   GIF version

Theorem uvcff 21834
Description: Domain and codomain of the unit vector generator; ring condition required to be sure 1 and 0 are actually in the ring. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
uvcff.u 𝑈 = (𝑅 unitVec 𝐼)
uvcff.y 𝑌 = (𝑅 freeLMod 𝐼)
uvcff.b 𝐵 = (Base‘𝑌)
Assertion
Ref Expression
uvcff ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑈:𝐼𝐵)

Proof of Theorem uvcff
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uvcff.u . . 3 𝑈 = (𝑅 unitVec 𝐼)
2 eqid 2740 . . 3 (1r𝑅) = (1r𝑅)
3 eqid 2740 . . 3 (0g𝑅) = (0g𝑅)
41, 2, 3uvcfval 21827 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑈 = (𝑖𝐼 ↦ (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))))
5 eqid 2740 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
65, 2ringidcl 20289 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
75, 3ring0cl 20290 . . . . . . 7 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
86, 7ifcld 4594 . . . . . 6 (𝑅 ∈ Ring → if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
98ad3antrrr 729 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)) ∈ (Base‘𝑅))
109fmpttd 7149 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))):𝐼⟶(Base‘𝑅))
11 fvex 6933 . . . . . 6 (Base‘𝑅) ∈ V
12 elmapg 8897 . . . . . 6 (((Base‘𝑅) ∈ V ∧ 𝐼𝑊) → ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))):𝐼⟶(Base‘𝑅)))
1311, 12mpan 689 . . . . 5 (𝐼𝑊 → ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))):𝐼⟶(Base‘𝑅)))
1413ad2antlr 726 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))):𝐼⟶(Base‘𝑅)))
1510, 14mpbird 257 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼))
16 mptexg 7258 . . . . 5 (𝐼𝑊 → (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ V)
1716ad2antlr 726 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ V)
18 funmpt 6616 . . . . 5 Fun (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)))
1918a1i 11 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → Fun (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))))
20 fvex 6933 . . . . 5 (0g𝑅) ∈ V
2120a1i 11 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (0g𝑅) ∈ V)
22 snfi 9109 . . . . 5 {𝑖} ∈ Fin
2322a1i 11 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → {𝑖} ∈ Fin)
24 eldifsni 4815 . . . . . . . 8 (𝑗 ∈ (𝐼 ∖ {𝑖}) → 𝑗𝑖)
2524adantl 481 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) ∧ 𝑗 ∈ (𝐼 ∖ {𝑖})) → 𝑗𝑖)
2625neneqd 2951 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) ∧ 𝑗 ∈ (𝐼 ∖ {𝑖})) → ¬ 𝑗 = 𝑖)
2726iffalsed 4559 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) ∧ 𝑗 ∈ (𝐼 ∖ {𝑖})) → if(𝑗 = 𝑖, (1r𝑅), (0g𝑅)) = (0g𝑅))
28 simplr 768 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → 𝐼𝑊)
2927, 28suppss2 8241 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) supp (0g𝑅)) ⊆ {𝑖})
30 suppssfifsupp 9449 . . . 4 ((((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ V ∧ Fun (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∧ (0g𝑅) ∈ V) ∧ ({𝑖} ∈ Fin ∧ ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) supp (0g𝑅)) ⊆ {𝑖})) → (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) finSupp (0g𝑅))
3117, 19, 21, 23, 29, 30syl32anc 1378 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) finSupp (0g𝑅))
32 uvcff.y . . . . 5 𝑌 = (𝑅 freeLMod 𝐼)
33 uvcff.b . . . . 5 𝐵 = (Base‘𝑌)
3432, 5, 3, 33frlmelbas 21799 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ 𝐵 ↔ ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ∧ (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) finSupp (0g𝑅))))
3534adantr 480 . . 3 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ 𝐵 ↔ ((𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ∧ (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) finSupp (0g𝑅))))
3615, 31, 35mpbir2and 712 . 2 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (𝑗𝐼 ↦ if(𝑗 = 𝑖, (1r𝑅), (0g𝑅))) ∈ 𝐵)
374, 36fmpt3d 7150 1 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑈:𝐼𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  cdif 3973  wss 3976  ifcif 4548  {csn 4648   class class class wbr 5166  cmpt 5249  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448   supp csupp 8201  m cmap 8884  Fincfn 9003   finSupp cfsupp 9431  Basecbs 17258  0gc0g 17499  1rcur 20208  Ringcrg 20260   freeLMod cfrlm 21789   unitVec cuvc 21825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-pws 17509  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-mgp 20162  df-ur 20209  df-ring 20262  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790  df-uvc 21826
This theorem is referenced by:  uvcf1  21835  uvcresum  21836  frlmssuvc1  21837  frlmssuvc2  21838  frlmsslsp  21839  frlmlbs  21840  frlmup2  21842  frlmup3  21843  frlmup4  21844  lindsdom  37574  matunitlindflem2  37577  uvccl  42496  aacllem  48895
  Copyright terms: Public domain W3C validator