| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uvcff | Structured version Visualization version GIF version | ||
| Description: Domain and codomain of the unit vector generator; ring condition required to be sure 1 and 0 are actually in the ring. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.) |
| Ref | Expression |
|---|---|
| uvcff.u | ⊢ 𝑈 = (𝑅 unitVec 𝐼) |
| uvcff.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
| uvcff.b | ⊢ 𝐵 = (Base‘𝑌) |
| Ref | Expression |
|---|---|
| uvcff | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uvcff.u | . . 3 ⊢ 𝑈 = (𝑅 unitVec 𝐼) | |
| 2 | eqid 2729 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 3 | eqid 2729 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 4 | 1, 2, 3 | uvcfval 21669 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑈 = (𝑖 ∈ 𝐼 ↦ (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))))) |
| 5 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 6 | 5, 2 | ringidcl 20150 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 7 | 5, 3 | ring0cl 20152 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 8 | 6, 7 | ifcld 4531 | . . . . . 6 ⊢ (𝑅 ∈ Ring → if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
| 9 | 8 | ad3antrrr 730 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐼) → if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅)) ∈ (Base‘𝑅)) |
| 10 | 9 | fmpttd 7069 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))):𝐼⟶(Base‘𝑅)) |
| 11 | fvex 6853 | . . . . . 6 ⊢ (Base‘𝑅) ∈ V | |
| 12 | elmapg 8789 | . . . . . 6 ⊢ (((Base‘𝑅) ∈ V ∧ 𝐼 ∈ 𝑊) → ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))):𝐼⟶(Base‘𝑅))) | |
| 13 | 11, 12 | mpan 690 | . . . . 5 ⊢ (𝐼 ∈ 𝑊 → ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))):𝐼⟶(Base‘𝑅))) |
| 14 | 13 | ad2antlr 727 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))):𝐼⟶(Base‘𝑅))) |
| 15 | 10, 14 | mpbird 257 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼)) |
| 16 | mptexg 7177 | . . . . 5 ⊢ (𝐼 ∈ 𝑊 → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ V) | |
| 17 | 16 | ad2antlr 727 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ V) |
| 18 | funmpt 6538 | . . . . 5 ⊢ Fun (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) | |
| 19 | 18 | a1i 11 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → Fun (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅)))) |
| 20 | fvex 6853 | . . . . 5 ⊢ (0g‘𝑅) ∈ V | |
| 21 | 20 | a1i 11 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (0g‘𝑅) ∈ V) |
| 22 | snfi 8991 | . . . . 5 ⊢ {𝑖} ∈ Fin | |
| 23 | 22 | a1i 11 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → {𝑖} ∈ Fin) |
| 24 | eldifsni 4750 | . . . . . . . 8 ⊢ (𝑗 ∈ (𝐼 ∖ {𝑖}) → 𝑗 ≠ 𝑖) | |
| 25 | 24 | adantl 481 | . . . . . . 7 ⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ (𝐼 ∖ {𝑖})) → 𝑗 ≠ 𝑖) |
| 26 | 25 | neneqd 2930 | . . . . . 6 ⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ (𝐼 ∖ {𝑖})) → ¬ 𝑗 = 𝑖) |
| 27 | 26 | iffalsed 4495 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ (𝐼 ∖ {𝑖})) → if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅)) = (0g‘𝑅)) |
| 28 | simplr 768 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → 𝐼 ∈ 𝑊) | |
| 29 | 27, 28 | suppss2 8156 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) supp (0g‘𝑅)) ⊆ {𝑖}) |
| 30 | suppssfifsupp 9307 | . . . 4 ⊢ ((((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ V ∧ Fun (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∧ (0g‘𝑅) ∈ V) ∧ ({𝑖} ∈ Fin ∧ ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) supp (0g‘𝑅)) ⊆ {𝑖})) → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) finSupp (0g‘𝑅)) | |
| 31 | 17, 19, 21, 23, 29, 30 | syl32anc 1380 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) finSupp (0g‘𝑅)) |
| 32 | uvcff.y | . . . . 5 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
| 33 | uvcff.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑌) | |
| 34 | 32, 5, 3, 33 | frlmelbas 21641 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ 𝐵 ↔ ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ∧ (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) finSupp (0g‘𝑅)))) |
| 35 | 34 | adantr 480 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ 𝐵 ↔ ((𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m 𝐼) ∧ (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) finSupp (0g‘𝑅)))) |
| 36 | 15, 31, 35 | mpbir2and 713 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ 𝑖 ∈ 𝐼) → (𝑗 ∈ 𝐼 ↦ if(𝑗 = 𝑖, (1r‘𝑅), (0g‘𝑅))) ∈ 𝐵) |
| 37 | 4, 36 | fmpt3d 7070 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3444 ∖ cdif 3908 ⊆ wss 3911 ifcif 4484 {csn 4585 class class class wbr 5102 ↦ cmpt 5183 Fun wfun 6493 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 supp csupp 8116 ↑m cmap 8776 Fincfn 8895 finSupp cfsupp 9288 Basecbs 17155 0gc0g 17378 1rcur 20066 Ringcrg 20118 freeLMod cfrlm 21631 unitVec cuvc 21667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17380 df-prds 17386 df-pws 17388 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-mgp 20026 df-ur 20067 df-ring 20120 df-sra 21056 df-rgmod 21057 df-dsmm 21617 df-frlm 21632 df-uvc 21668 |
| This theorem is referenced by: uvcf1 21677 uvcresum 21678 frlmssuvc1 21679 frlmssuvc2 21680 frlmsslsp 21681 frlmlbs 21682 frlmup2 21684 frlmup3 21685 frlmup4 21686 lindsdom 37581 matunitlindflem2 37584 uvccl 42502 aacllem 49763 |
| Copyright terms: Public domain | W3C validator |