![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uvcvv1 | Structured version Visualization version GIF version |
Description: The unit vector is one at its designated coordinate. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
Ref | Expression |
---|---|
uvcvv.u | ⊢ 𝑈 = (𝑅 unitVec 𝐼) |
uvcvv.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
uvcvv.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
uvcvv.j | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
uvcvv1.o | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
uvcvv1 | ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐽) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uvcvv.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
2 | uvcvv.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
3 | uvcvv.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
4 | uvcvv.u | . . . 4 ⊢ 𝑈 = (𝑅 unitVec 𝐼) | |
5 | uvcvv1.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
6 | eqid 2777 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
7 | 4, 5, 6 | uvcvval 20529 | . . 3 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐽 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐽) = if(𝐽 = 𝐽, 1 , (0g‘𝑅))) |
8 | 1, 2, 3, 3, 7 | syl31anc 1441 | . 2 ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐽) = if(𝐽 = 𝐽, 1 , (0g‘𝑅))) |
9 | eqid 2777 | . . 3 ⊢ 𝐽 = 𝐽 | |
10 | iftrue 4312 | . . 3 ⊢ (𝐽 = 𝐽 → if(𝐽 = 𝐽, 1 , (0g‘𝑅)) = 1 ) | |
11 | 9, 10 | mp1i 13 | . 2 ⊢ (𝜑 → if(𝐽 = 𝐽, 1 , (0g‘𝑅)) = 1 ) |
12 | 8, 11 | eqtrd 2813 | 1 ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐽) = 1 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2106 ifcif 4306 ‘cfv 6135 (class class class)co 6922 0gc0g 16486 1rcur 18888 unitVec cuvc 20525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-uvc 20526 |
This theorem is referenced by: uvcf1 20535 uvcresum 20536 frlmssuvc2 20538 frlmup2 20542 |
Copyright terms: Public domain | W3C validator |