MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcvv1 Structured version   Visualization version   GIF version

Theorem uvcvv1 21680
Description: The unit vector is one at its designated coordinate. (Contributed by Stefan O'Rear, 3-Feb-2015.)
Hypotheses
Ref Expression
uvcvv.u 𝑈 = (𝑅 unitVec 𝐼)
uvcvv.r (𝜑𝑅𝑉)
uvcvv.i (𝜑𝐼𝑊)
uvcvv.j (𝜑𝐽𝐼)
uvcvv1.o 1 = (1r𝑅)
Assertion
Ref Expression
uvcvv1 (𝜑 → ((𝑈𝐽)‘𝐽) = 1 )

Proof of Theorem uvcvv1
StepHypRef Expression
1 uvcvv.r . . 3 (𝜑𝑅𝑉)
2 uvcvv.i . . 3 (𝜑𝐼𝑊)
3 uvcvv.j . . 3 (𝜑𝐽𝐼)
4 uvcvv.u . . . 4 𝑈 = (𝑅 unitVec 𝐼)
5 uvcvv1.o . . . 4 1 = (1r𝑅)
6 eqid 2726 . . . 4 (0g𝑅) = (0g𝑅)
74, 5, 6uvcvval 21677 . . 3 (((𝑅𝑉𝐼𝑊𝐽𝐼) ∧ 𝐽𝐼) → ((𝑈𝐽)‘𝐽) = if(𝐽 = 𝐽, 1 , (0g𝑅)))
81, 2, 3, 3, 7syl31anc 1370 . 2 (𝜑 → ((𝑈𝐽)‘𝐽) = if(𝐽 = 𝐽, 1 , (0g𝑅)))
9 eqid 2726 . . 3 𝐽 = 𝐽
10 iftrue 4529 . . 3 (𝐽 = 𝐽 → if(𝐽 = 𝐽, 1 , (0g𝑅)) = 1 )
119, 10mp1i 13 . 2 (𝜑 → if(𝐽 = 𝐽, 1 , (0g𝑅)) = 1 )
128, 11eqtrd 2766 1 (𝜑 → ((𝑈𝐽)‘𝐽) = 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  ifcif 4523  cfv 6536  (class class class)co 7404  0gc0g 17392  1rcur 20084   unitVec cuvc 21673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-uvc 21674
This theorem is referenced by:  uvcf1  21683  uvcresum  21684  frlmssuvc2  21686  frlmup2  21690  uvcn0  41650  0prjspnrel  41928
  Copyright terms: Public domain W3C validator