MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcvv1 Structured version   Visualization version   GIF version

Theorem uvcvv1 21343
Description: The unit vector is one at its designated coordinate. (Contributed by Stefan O'Rear, 3-Feb-2015.)
Hypotheses
Ref Expression
uvcvv.u 𝑈 = (𝑅 unitVec 𝐼)
uvcvv.r (𝜑𝑅𝑉)
uvcvv.i (𝜑𝐼𝑊)
uvcvv.j (𝜑𝐽𝐼)
uvcvv1.o 1 = (1r𝑅)
Assertion
Ref Expression
uvcvv1 (𝜑 → ((𝑈𝐽)‘𝐽) = 1 )

Proof of Theorem uvcvv1
StepHypRef Expression
1 uvcvv.r . . 3 (𝜑𝑅𝑉)
2 uvcvv.i . . 3 (𝜑𝐼𝑊)
3 uvcvv.j . . 3 (𝜑𝐽𝐼)
4 uvcvv.u . . . 4 𝑈 = (𝑅 unitVec 𝐼)
5 uvcvv1.o . . . 4 1 = (1r𝑅)
6 eqid 2732 . . . 4 (0g𝑅) = (0g𝑅)
74, 5, 6uvcvval 21340 . . 3 (((𝑅𝑉𝐼𝑊𝐽𝐼) ∧ 𝐽𝐼) → ((𝑈𝐽)‘𝐽) = if(𝐽 = 𝐽, 1 , (0g𝑅)))
81, 2, 3, 3, 7syl31anc 1373 . 2 (𝜑 → ((𝑈𝐽)‘𝐽) = if(𝐽 = 𝐽, 1 , (0g𝑅)))
9 eqid 2732 . . 3 𝐽 = 𝐽
10 iftrue 4534 . . 3 (𝐽 = 𝐽 → if(𝐽 = 𝐽, 1 , (0g𝑅)) = 1 )
119, 10mp1i 13 . 2 (𝜑 → if(𝐽 = 𝐽, 1 , (0g𝑅)) = 1 )
128, 11eqtrd 2772 1 (𝜑 → ((𝑈𝐽)‘𝐽) = 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  ifcif 4528  cfv 6543  (class class class)co 7408  0gc0g 17384  1rcur 20003   unitVec cuvc 21336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-uvc 21337
This theorem is referenced by:  uvcf1  21346  uvcresum  21347  frlmssuvc2  21349  frlmup2  21353  uvcn0  41114  0prjspnrel  41370
  Copyright terms: Public domain W3C validator