Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uvcvv1 | Structured version Visualization version GIF version |
Description: The unit vector is one at its designated coordinate. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
Ref | Expression |
---|---|
uvcvv.u | ⊢ 𝑈 = (𝑅 unitVec 𝐼) |
uvcvv.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
uvcvv.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
uvcvv.j | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
uvcvv1.o | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
uvcvv1 | ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐽) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uvcvv.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
2 | uvcvv.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
3 | uvcvv.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
4 | uvcvv.u | . . . 4 ⊢ 𝑈 = (𝑅 unitVec 𝐼) | |
5 | uvcvv1.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
6 | eqid 2738 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
7 | 4, 5, 6 | uvcvval 20993 | . . 3 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐽 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐽) = if(𝐽 = 𝐽, 1 , (0g‘𝑅))) |
8 | 1, 2, 3, 3, 7 | syl31anc 1372 | . 2 ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐽) = if(𝐽 = 𝐽, 1 , (0g‘𝑅))) |
9 | eqid 2738 | . . 3 ⊢ 𝐽 = 𝐽 | |
10 | iftrue 4465 | . . 3 ⊢ (𝐽 = 𝐽 → if(𝐽 = 𝐽, 1 , (0g‘𝑅)) = 1 ) | |
11 | 9, 10 | mp1i 13 | . 2 ⊢ (𝜑 → if(𝐽 = 𝐽, 1 , (0g‘𝑅)) = 1 ) |
12 | 8, 11 | eqtrd 2778 | 1 ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐽) = 1 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ifcif 4459 ‘cfv 6433 (class class class)co 7275 0gc0g 17150 1rcur 19737 unitVec cuvc 20989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-uvc 20990 |
This theorem is referenced by: uvcf1 20999 uvcresum 21000 frlmssuvc2 21002 frlmup2 21006 uvcn0 40265 0prjspnrel 40464 |
Copyright terms: Public domain | W3C validator |