MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcvv1 Structured version   Visualization version   GIF version

Theorem uvcvv1 20933
Description: The unit vector is one at its designated coordinate. (Contributed by Stefan O'Rear, 3-Feb-2015.)
Hypotheses
Ref Expression
uvcvv.u 𝑈 = (𝑅 unitVec 𝐼)
uvcvv.r (𝜑𝑅𝑉)
uvcvv.i (𝜑𝐼𝑊)
uvcvv.j (𝜑𝐽𝐼)
uvcvv1.o 1 = (1r𝑅)
Assertion
Ref Expression
uvcvv1 (𝜑 → ((𝑈𝐽)‘𝐽) = 1 )

Proof of Theorem uvcvv1
StepHypRef Expression
1 uvcvv.r . . 3 (𝜑𝑅𝑉)
2 uvcvv.i . . 3 (𝜑𝐼𝑊)
3 uvcvv.j . . 3 (𝜑𝐽𝐼)
4 uvcvv.u . . . 4 𝑈 = (𝑅 unitVec 𝐼)
5 uvcvv1.o . . . 4 1 = (1r𝑅)
6 eqid 2821 . . . 4 (0g𝑅) = (0g𝑅)
74, 5, 6uvcvval 20930 . . 3 (((𝑅𝑉𝐼𝑊𝐽𝐼) ∧ 𝐽𝐼) → ((𝑈𝐽)‘𝐽) = if(𝐽 = 𝐽, 1 , (0g𝑅)))
81, 2, 3, 3, 7syl31anc 1369 . 2 (𝜑 → ((𝑈𝐽)‘𝐽) = if(𝐽 = 𝐽, 1 , (0g𝑅)))
9 eqid 2821 . . 3 𝐽 = 𝐽
10 iftrue 4473 . . 3 (𝐽 = 𝐽 → if(𝐽 = 𝐽, 1 , (0g𝑅)) = 1 )
119, 10mp1i 13 . 2 (𝜑 → if(𝐽 = 𝐽, 1 , (0g𝑅)) = 1 )
128, 11eqtrd 2856 1 (𝜑 → ((𝑈𝐽)‘𝐽) = 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  ifcif 4467  cfv 6355  (class class class)co 7156  0gc0g 16713  1rcur 19251   unitVec cuvc 20926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-uvc 20927
This theorem is referenced by:  uvcf1  20936  uvcresum  20937  frlmssuvc2  20939  frlmup2  20943  uvcn0  39171  0prjspnrel  39289
  Copyright terms: Public domain W3C validator