| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uvcvv1 | Structured version Visualization version GIF version | ||
| Description: The unit vector is one at its designated coordinate. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| Ref | Expression |
|---|---|
| uvcvv.u | ⊢ 𝑈 = (𝑅 unitVec 𝐼) |
| uvcvv.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| uvcvv.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| uvcvv.j | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
| uvcvv1.o | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| uvcvv1 | ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐽) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uvcvv.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 2 | uvcvv.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 3 | uvcvv.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
| 4 | uvcvv.u | . . . 4 ⊢ 𝑈 = (𝑅 unitVec 𝐼) | |
| 5 | uvcvv1.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 6 | eqid 2729 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 7 | 4, 5, 6 | uvcvval 21671 | . . 3 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐽 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐽) = if(𝐽 = 𝐽, 1 , (0g‘𝑅))) |
| 8 | 1, 2, 3, 3, 7 | syl31anc 1375 | . 2 ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐽) = if(𝐽 = 𝐽, 1 , (0g‘𝑅))) |
| 9 | eqid 2729 | . . 3 ⊢ 𝐽 = 𝐽 | |
| 10 | iftrue 4490 | . . 3 ⊢ (𝐽 = 𝐽 → if(𝐽 = 𝐽, 1 , (0g‘𝑅)) = 1 ) | |
| 11 | 9, 10 | mp1i 13 | . 2 ⊢ (𝜑 → if(𝐽 = 𝐽, 1 , (0g‘𝑅)) = 1 ) |
| 12 | 8, 11 | eqtrd 2764 | 1 ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐽) = 1 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ifcif 4484 ‘cfv 6499 (class class class)co 7369 0gc0g 17378 1rcur 20066 unitVec cuvc 21667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-uvc 21668 |
| This theorem is referenced by: uvcf1 21677 uvcresum 21678 frlmssuvc2 21680 frlmup2 21684 uvcn0 42503 0prjspnrel 42588 |
| Copyright terms: Public domain | W3C validator |