| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uvcvv1 | Structured version Visualization version GIF version | ||
| Description: The unit vector is one at its designated coordinate. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| Ref | Expression |
|---|---|
| uvcvv.u | ⊢ 𝑈 = (𝑅 unitVec 𝐼) |
| uvcvv.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| uvcvv.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| uvcvv.j | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
| uvcvv1.o | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| uvcvv1 | ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐽) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uvcvv.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 2 | uvcvv.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 3 | uvcvv.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
| 4 | uvcvv.u | . . . 4 ⊢ 𝑈 = (𝑅 unitVec 𝐼) | |
| 5 | uvcvv1.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 6 | eqid 2735 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 7 | 4, 5, 6 | uvcvval 21746 | . . 3 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐽 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐽) = if(𝐽 = 𝐽, 1 , (0g‘𝑅))) |
| 8 | 1, 2, 3, 3, 7 | syl31anc 1375 | . 2 ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐽) = if(𝐽 = 𝐽, 1 , (0g‘𝑅))) |
| 9 | eqid 2735 | . . 3 ⊢ 𝐽 = 𝐽 | |
| 10 | iftrue 4506 | . . 3 ⊢ (𝐽 = 𝐽 → if(𝐽 = 𝐽, 1 , (0g‘𝑅)) = 1 ) | |
| 11 | 9, 10 | mp1i 13 | . 2 ⊢ (𝜑 → if(𝐽 = 𝐽, 1 , (0g‘𝑅)) = 1 ) |
| 12 | 8, 11 | eqtrd 2770 | 1 ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐽) = 1 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ifcif 4500 ‘cfv 6531 (class class class)co 7405 0gc0g 17453 1rcur 20141 unitVec cuvc 21742 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-uvc 21743 |
| This theorem is referenced by: uvcf1 21752 uvcresum 21753 frlmssuvc2 21755 frlmup2 21759 uvcn0 42565 0prjspnrel 42650 |
| Copyright terms: Public domain | W3C validator |