MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcvv1 Structured version   Visualization version   GIF version

Theorem uvcvv1 21787
Description: The unit vector is one at its designated coordinate. (Contributed by Stefan O'Rear, 3-Feb-2015.)
Hypotheses
Ref Expression
uvcvv.u 𝑈 = (𝑅 unitVec 𝐼)
uvcvv.r (𝜑𝑅𝑉)
uvcvv.i (𝜑𝐼𝑊)
uvcvv.j (𝜑𝐽𝐼)
uvcvv1.o 1 = (1r𝑅)
Assertion
Ref Expression
uvcvv1 (𝜑 → ((𝑈𝐽)‘𝐽) = 1 )

Proof of Theorem uvcvv1
StepHypRef Expression
1 uvcvv.r . . 3 (𝜑𝑅𝑉)
2 uvcvv.i . . 3 (𝜑𝐼𝑊)
3 uvcvv.j . . 3 (𝜑𝐽𝐼)
4 uvcvv.u . . . 4 𝑈 = (𝑅 unitVec 𝐼)
5 uvcvv1.o . . . 4 1 = (1r𝑅)
6 eqid 2726 . . . 4 (0g𝑅) = (0g𝑅)
74, 5, 6uvcvval 21784 . . 3 (((𝑅𝑉𝐼𝑊𝐽𝐼) ∧ 𝐽𝐼) → ((𝑈𝐽)‘𝐽) = if(𝐽 = 𝐽, 1 , (0g𝑅)))
81, 2, 3, 3, 7syl31anc 1370 . 2 (𝜑 → ((𝑈𝐽)‘𝐽) = if(𝐽 = 𝐽, 1 , (0g𝑅)))
9 eqid 2726 . . 3 𝐽 = 𝐽
10 iftrue 4539 . . 3 (𝐽 = 𝐽 → if(𝐽 = 𝐽, 1 , (0g𝑅)) = 1 )
119, 10mp1i 13 . 2 (𝜑 → if(𝐽 = 𝐽, 1 , (0g𝑅)) = 1 )
128, 11eqtrd 2766 1 (𝜑 → ((𝑈𝐽)‘𝐽) = 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  ifcif 4533  cfv 6554  (class class class)co 7424  0gc0g 17454  1rcur 20164   unitVec cuvc 21780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-uvc 21781
This theorem is referenced by:  uvcf1  21790  uvcresum  21791  frlmssuvc2  21793  frlmup2  21797  uvcn0  42014  0prjspnrel  42281
  Copyright terms: Public domain W3C validator