MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdgfival Structured version   Visualization version   GIF version

Theorem vtxdgfival 29257
Description: The degree of a vertex for graphs of finite size. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 21-Jan-2018.) (Revised by AV, 8-Dec-2020.) (Revised by AV, 22-Mar-2021.)
Hypotheses
Ref Expression
vtxdgval.v 𝑉 = (Vtx‘𝐺)
vtxdgval.i 𝐼 = (iEdg‘𝐺)
vtxdgval.a 𝐴 = dom 𝐼
Assertion
Ref Expression
vtxdgfival ((𝐴 ∈ Fin ∧ 𝑈𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) + (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝑈
Allowed substitution hints:   𝐼(𝑥)   𝑉(𝑥)

Proof of Theorem vtxdgfival
StepHypRef Expression
1 vtxdgval.v . . . 4 𝑉 = (Vtx‘𝐺)
2 vtxdgval.i . . . 4 𝐼 = (iEdg‘𝐺)
3 vtxdgval.a . . . 4 𝐴 = dom 𝐼
41, 2, 3vtxdgval 29256 . . 3 (𝑈𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
54adantl 481 . 2 ((𝐴 ∈ Fin ∧ 𝑈𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
6 rabfi 9283 . . . . . . 7 (𝐴 ∈ Fin → {𝑥𝐴𝑈 ∈ (𝐼𝑥)} ∈ Fin)
7 hashcl 14333 . . . . . . 7 ({𝑥𝐴𝑈 ∈ (𝐼𝑥)} ∈ Fin → (♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℕ0)
86, 7syl 17 . . . . . 6 (𝐴 ∈ Fin → (♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℕ0)
98nn0red 12549 . . . . 5 (𝐴 ∈ Fin → (♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℝ)
10 rabfi 9283 . . . . . . 7 (𝐴 ∈ Fin → {𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}} ∈ Fin)
11 hashcl 14333 . . . . . . 7 ({𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}} ∈ Fin → (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}}) ∈ ℕ0)
1210, 11syl 17 . . . . . 6 (𝐴 ∈ Fin → (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}}) ∈ ℕ0)
1312nn0red 12549 . . . . 5 (𝐴 ∈ Fin → (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}}) ∈ ℝ)
149, 13jca 511 . . . 4 (𝐴 ∈ Fin → ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℝ ∧ (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}}) ∈ ℝ))
1514adantr 480 . . 3 ((𝐴 ∈ Fin ∧ 𝑈𝑉) → ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℝ ∧ (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}}) ∈ ℝ))
16 rexadd 13229 . . 3 (((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℝ ∧ (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}}) ∈ ℝ) → ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})) = ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) + (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
1715, 16syl 17 . 2 ((𝐴 ∈ Fin ∧ 𝑈𝑉) → ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})) = ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) + (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
185, 17eqtrd 2767 1 ((𝐴 ∈ Fin ∧ 𝑈𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) + (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  {crab 3427  {csn 4624  dom cdm 5672  cfv 6542  (class class class)co 7414  Fincfn 8953  cr 11123   + caddc 11127  0cn0 12488   +𝑒 cxad 13108  chash 14307  Vtxcvtx 28783  iEdgciedg 28784  VtxDegcvtxdg 29253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-2nd 7986  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8716  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-card 9948  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-nn 12229  df-n0 12489  df-z 12575  df-uz 12839  df-xadd 13111  df-hash 14308  df-vtxdg 29254
This theorem is referenced by:  vtxdg0e  29262  vtxdgfisnn0  29263  finsumvtxdg2ssteplem2  29334
  Copyright terms: Public domain W3C validator