MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdgfival Structured version   Visualization version   GIF version

Theorem vtxdgfival 29459
Description: The degree of a vertex for graphs of finite size. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 21-Jan-2018.) (Revised by AV, 8-Dec-2020.) (Revised by AV, 22-Mar-2021.)
Hypotheses
Ref Expression
vtxdgval.v 𝑉 = (Vtx‘𝐺)
vtxdgval.i 𝐼 = (iEdg‘𝐺)
vtxdgval.a 𝐴 = dom 𝐼
Assertion
Ref Expression
vtxdgfival ((𝐴 ∈ Fin ∧ 𝑈𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) + (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝑈
Allowed substitution hints:   𝐼(𝑥)   𝑉(𝑥)

Proof of Theorem vtxdgfival
StepHypRef Expression
1 vtxdgval.v . . . 4 𝑉 = (Vtx‘𝐺)
2 vtxdgval.i . . . 4 𝐼 = (iEdg‘𝐺)
3 vtxdgval.a . . . 4 𝐴 = dom 𝐼
41, 2, 3vtxdgval 29458 . . 3 (𝑈𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
54adantl 481 . 2 ((𝐴 ∈ Fin ∧ 𝑈𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
6 rabfi 9165 . . . . . . 7 (𝐴 ∈ Fin → {𝑥𝐴𝑈 ∈ (𝐼𝑥)} ∈ Fin)
7 hashcl 14273 . . . . . . 7 ({𝑥𝐴𝑈 ∈ (𝐼𝑥)} ∈ Fin → (♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℕ0)
86, 7syl 17 . . . . . 6 (𝐴 ∈ Fin → (♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℕ0)
98nn0red 12453 . . . . 5 (𝐴 ∈ Fin → (♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℝ)
10 rabfi 9165 . . . . . . 7 (𝐴 ∈ Fin → {𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}} ∈ Fin)
11 hashcl 14273 . . . . . . 7 ({𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}} ∈ Fin → (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}}) ∈ ℕ0)
1210, 11syl 17 . . . . . 6 (𝐴 ∈ Fin → (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}}) ∈ ℕ0)
1312nn0red 12453 . . . . 5 (𝐴 ∈ Fin → (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}}) ∈ ℝ)
149, 13jca 511 . . . 4 (𝐴 ∈ Fin → ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℝ ∧ (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}}) ∈ ℝ))
1514adantr 480 . . 3 ((𝐴 ∈ Fin ∧ 𝑈𝑉) → ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℝ ∧ (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}}) ∈ ℝ))
16 rexadd 13141 . . 3 (((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℝ ∧ (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}}) ∈ ℝ) → ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})) = ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) + (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
1715, 16syl 17 . 2 ((𝐴 ∈ Fin ∧ 𝑈𝑉) → ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})) = ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) + (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
185, 17eqtrd 2768 1 ((𝐴 ∈ Fin ∧ 𝑈𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) + (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {crab 3397  {csn 4577  dom cdm 5621  cfv 6489  (class class class)co 7355  Fincfn 8878  cr 11015   + caddc 11019  0cn0 12391   +𝑒 cxad 13019  chash 14247  Vtxcvtx 28985  iEdgciedg 28986  VtxDegcvtxdg 29455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-n0 12392  df-z 12479  df-uz 12743  df-xadd 13022  df-hash 14248  df-vtxdg 29456
This theorem is referenced by:  vtxdg0e  29464  vtxdgfisnn0  29465  finsumvtxdg2ssteplem2  29536
  Copyright terms: Public domain W3C validator