![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtxdgfival | Structured version Visualization version GIF version |
Description: The degree of a vertex for graphs of finite size. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 21-Jan-2018.) (Revised by AV, 8-Dec-2020.) (Revised by AV, 22-Mar-2021.) |
Ref | Expression |
---|---|
vtxdgval.v | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxdgval.i | ⊢ 𝐼 = (iEdg‘𝐺) |
vtxdgval.a | ⊢ 𝐴 = dom 𝐼 |
Ref | Expression |
---|---|
vtxdgfival | ⊢ ((𝐴 ∈ Fin ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) + (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdgval.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | vtxdgval.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | vtxdgval.a | . . . 4 ⊢ 𝐴 = dom 𝐼 | |
4 | 1, 2, 3 | vtxdgval 29501 | . . 3 ⊢ (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) |
5 | 4 | adantl 481 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) |
6 | rabfi 9301 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → {𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)} ∈ Fin) | |
7 | hashcl 14392 | . . . . . . 7 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)} ∈ Fin → (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) ∈ ℕ0) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) ∈ ℕ0) |
9 | 8 | nn0red 12586 | . . . . 5 ⊢ (𝐴 ∈ Fin → (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) ∈ ℝ) |
10 | rabfi 9301 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}} ∈ Fin) | |
11 | hashcl 14392 | . . . . . . 7 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}} ∈ Fin → (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}) ∈ ℕ0) | |
12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}) ∈ ℕ0) |
13 | 12 | nn0red 12586 | . . . . 5 ⊢ (𝐴 ∈ Fin → (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}) ∈ ℝ) |
14 | 9, 13 | jca 511 | . . . 4 ⊢ (𝐴 ∈ Fin → ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) ∈ ℝ ∧ (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}) ∈ ℝ)) |
15 | 14 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝑈 ∈ 𝑉) → ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) ∈ ℝ ∧ (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}) ∈ ℝ)) |
16 | rexadd 13271 | . . 3 ⊢ (((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) ∈ ℝ ∧ (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}) ∈ ℝ) → ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}})) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) + (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) | |
17 | 15, 16 | syl 17 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝑈 ∈ 𝑉) → ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}})) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) + (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) |
18 | 5, 17 | eqtrd 2775 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) + (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {crab 3433 {csn 4631 dom cdm 5689 ‘cfv 6563 (class class class)co 7431 Fincfn 8984 ℝcr 11152 + caddc 11156 ℕ0cn0 12524 +𝑒 cxad 13150 ♯chash 14366 Vtxcvtx 29028 iEdgciedg 29029 VtxDegcvtxdg 29498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-xadd 13153 df-hash 14367 df-vtxdg 29499 |
This theorem is referenced by: vtxdg0e 29507 vtxdgfisnn0 29508 finsumvtxdg2ssteplem2 29579 |
Copyright terms: Public domain | W3C validator |