Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtxdushgrfvedg | Structured version Visualization version GIF version |
Description: The value of the vertex degree function for a simple hypergraph. (Contributed by AV, 12-Dec-2020.) (Proof shortened by AV, 5-May-2021.) |
Ref | Expression |
---|---|
vtxdushgrfvedg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxdushgrfvedg.e | ⊢ 𝐸 = (Edg‘𝐺) |
vtxdushgrfvedg.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
Ref | Expression |
---|---|
vtxdushgrfvedg | ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → (𝐷‘𝑈) = ((♯‘{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒}) +𝑒 (♯‘{𝑒 ∈ 𝐸 ∣ 𝑒 = {𝑈}}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdushgrfvedg.d | . . . 4 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
2 | 1 | fveq1i 6659 | . . 3 ⊢ (𝐷‘𝑈) = ((VtxDeg‘𝐺)‘𝑈) |
3 | 2 | a1i 11 | . 2 ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → (𝐷‘𝑈) = ((VtxDeg‘𝐺)‘𝑈)) |
4 | vtxdushgrfvedg.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | eqid 2758 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
6 | eqid 2758 | . . . 4 ⊢ dom (iEdg‘𝐺) = dom (iEdg‘𝐺) | |
7 | 4, 5, 6 | vtxdgval 27357 | . . 3 ⊢ (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}}))) |
8 | 7 | adantl 485 | . 2 ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}}))) |
9 | vtxdushgrfvedg.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
10 | 4, 9 | vtxdushgrfvedglem 27378 | . . 3 ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) = (♯‘{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒})) |
11 | fvex 6671 | . . . . . . 7 ⊢ (iEdg‘𝐺) ∈ V | |
12 | 11 | dmex 7621 | . . . . . 6 ⊢ dom (iEdg‘𝐺) ∈ V |
13 | 12 | rabex 5202 | . . . . 5 ⊢ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ∈ V |
14 | 13 | a1i 11 | . . . 4 ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ∈ V) |
15 | eqid 2758 | . . . . 5 ⊢ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} = {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} | |
16 | eqeq1 2762 | . . . . . 6 ⊢ (𝑒 = 𝑐 → (𝑒 = {𝑈} ↔ 𝑐 = {𝑈})) | |
17 | 16 | cbvrabv 3404 | . . . . 5 ⊢ {𝑒 ∈ 𝐸 ∣ 𝑒 = {𝑈}} = {𝑐 ∈ 𝐸 ∣ 𝑐 = {𝑈}} |
18 | eqid 2758 | . . . . 5 ⊢ (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ↦ ((iEdg‘𝐺)‘𝑥)) = (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ↦ ((iEdg‘𝐺)‘𝑥)) | |
19 | 9, 5, 15, 17, 18 | ushgredgedgloop 27120 | . . . 4 ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ↦ ((iEdg‘𝐺)‘𝑥)):{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}}–1-1-onto→{𝑒 ∈ 𝐸 ∣ 𝑒 = {𝑈}}) |
20 | 14, 19 | hasheqf1od 13764 | . . 3 ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}}) = (♯‘{𝑒 ∈ 𝐸 ∣ 𝑒 = {𝑈}})) |
21 | 10, 20 | oveq12d 7168 | . 2 ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → ((♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}})) = ((♯‘{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒}) +𝑒 (♯‘{𝑒 ∈ 𝐸 ∣ 𝑒 = {𝑈}}))) |
22 | 3, 8, 21 | 3eqtrd 2797 | 1 ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → (𝐷‘𝑈) = ((♯‘{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒}) +𝑒 (♯‘{𝑒 ∈ 𝐸 ∣ 𝑒 = {𝑈}}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {crab 3074 Vcvv 3409 {csn 4522 ↦ cmpt 5112 dom cdm 5524 ‘cfv 6335 (class class class)co 7150 +𝑒 cxad 12546 ♯chash 13740 Vtxcvtx 26888 iEdgciedg 26889 Edgcedg 26939 USHGraphcushgr 26949 VtxDegcvtxdg 27354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-n0 11935 df-z 12021 df-uz 12283 df-hash 13741 df-edg 26940 df-uhgr 26950 df-ushgr 26951 df-vtxdg 27355 |
This theorem is referenced by: 1loopgrvd2 27392 |
Copyright terms: Public domain | W3C validator |