| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtxdushgrfvedg | Structured version Visualization version GIF version | ||
| Description: The value of the vertex degree function for a simple hypergraph. (Contributed by AV, 12-Dec-2020.) (Proof shortened by AV, 5-May-2021.) |
| Ref | Expression |
|---|---|
| vtxdushgrfvedg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| vtxdushgrfvedg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| vtxdushgrfvedg.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
| Ref | Expression |
|---|---|
| vtxdushgrfvedg | ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → (𝐷‘𝑈) = ((♯‘{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒}) +𝑒 (♯‘{𝑒 ∈ 𝐸 ∣ 𝑒 = {𝑈}}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdushgrfvedg.d | . . . 4 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
| 2 | 1 | fveq1i 6877 | . . 3 ⊢ (𝐷‘𝑈) = ((VtxDeg‘𝐺)‘𝑈) |
| 3 | 2 | a1i 11 | . 2 ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → (𝐷‘𝑈) = ((VtxDeg‘𝐺)‘𝑈)) |
| 4 | vtxdushgrfvedg.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 5 | eqid 2735 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 6 | eqid 2735 | . . . 4 ⊢ dom (iEdg‘𝐺) = dom (iEdg‘𝐺) | |
| 7 | 4, 5, 6 | vtxdgval 29448 | . . 3 ⊢ (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}}))) |
| 8 | 7 | adantl 481 | . 2 ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}}))) |
| 9 | vtxdushgrfvedg.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
| 10 | 4, 9 | vtxdushgrfvedglem 29469 | . . 3 ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) = (♯‘{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒})) |
| 11 | fvex 6889 | . . . . . . 7 ⊢ (iEdg‘𝐺) ∈ V | |
| 12 | 11 | dmex 7905 | . . . . . 6 ⊢ dom (iEdg‘𝐺) ∈ V |
| 13 | 12 | rabex 5309 | . . . . 5 ⊢ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ∈ V |
| 14 | 13 | a1i 11 | . . . 4 ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ∈ V) |
| 15 | eqid 2735 | . . . . 5 ⊢ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} = {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} | |
| 16 | eqeq1 2739 | . . . . . 6 ⊢ (𝑒 = 𝑐 → (𝑒 = {𝑈} ↔ 𝑐 = {𝑈})) | |
| 17 | 16 | cbvrabv 3426 | . . . . 5 ⊢ {𝑒 ∈ 𝐸 ∣ 𝑒 = {𝑈}} = {𝑐 ∈ 𝐸 ∣ 𝑐 = {𝑈}} |
| 18 | eqid 2735 | . . . . 5 ⊢ (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ↦ ((iEdg‘𝐺)‘𝑥)) = (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ↦ ((iEdg‘𝐺)‘𝑥)) | |
| 19 | 9, 5, 15, 17, 18 | ushgredgedgloop 29210 | . . . 4 ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ↦ ((iEdg‘𝐺)‘𝑥)):{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}}–1-1-onto→{𝑒 ∈ 𝐸 ∣ 𝑒 = {𝑈}}) |
| 20 | 14, 19 | hasheqf1od 14371 | . . 3 ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}}) = (♯‘{𝑒 ∈ 𝐸 ∣ 𝑒 = {𝑈}})) |
| 21 | 10, 20 | oveq12d 7423 | . 2 ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → ((♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}})) = ((♯‘{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒}) +𝑒 (♯‘{𝑒 ∈ 𝐸 ∣ 𝑒 = {𝑈}}))) |
| 22 | 3, 8, 21 | 3eqtrd 2774 | 1 ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → (𝐷‘𝑈) = ((♯‘{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒}) +𝑒 (♯‘{𝑒 ∈ 𝐸 ∣ 𝑒 = {𝑈}}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3415 Vcvv 3459 {csn 4601 ↦ cmpt 5201 dom cdm 5654 ‘cfv 6531 (class class class)co 7405 +𝑒 cxad 13126 ♯chash 14348 Vtxcvtx 28975 iEdgciedg 28976 Edgcedg 29026 USHGraphcushgr 29036 VtxDegcvtxdg 29445 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-hash 14349 df-edg 29027 df-uhgr 29037 df-ushgr 29038 df-vtxdg 29446 |
| This theorem is referenced by: 1loopgrvd2 29483 |
| Copyright terms: Public domain | W3C validator |