MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdushgrfvedg Structured version   Visualization version   GIF version

Theorem vtxdushgrfvedg 29523
Description: The value of the vertex degree function for a simple hypergraph. (Contributed by AV, 12-Dec-2020.) (Proof shortened by AV, 5-May-2021.)
Hypotheses
Ref Expression
vtxdushgrfvedg.v 𝑉 = (Vtx‘𝐺)
vtxdushgrfvedg.e 𝐸 = (Edg‘𝐺)
vtxdushgrfvedg.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
vtxdushgrfvedg ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (𝐷𝑈) = ((♯‘{𝑒𝐸𝑈𝑒}) +𝑒 (♯‘{𝑒𝐸𝑒 = {𝑈}})))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑈,𝑒   𝑒,𝑉
Allowed substitution hint:   𝐷(𝑒)

Proof of Theorem vtxdushgrfvedg
Dummy variables 𝑐 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vtxdushgrfvedg.d . . . 4 𝐷 = (VtxDeg‘𝐺)
21fveq1i 6908 . . 3 (𝐷𝑈) = ((VtxDeg‘𝐺)‘𝑈)
32a1i 11 . 2 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (𝐷𝑈) = ((VtxDeg‘𝐺)‘𝑈))
4 vtxdushgrfvedg.v . . . 4 𝑉 = (Vtx‘𝐺)
5 eqid 2735 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
6 eqid 2735 . . . 4 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
74, 5, 6vtxdgval 29501 . . 3 (𝑈𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}})))
87adantl 481 . 2 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}})))
9 vtxdushgrfvedg.e . . . 4 𝐸 = (Edg‘𝐺)
104, 9vtxdushgrfvedglem 29522 . . 3 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) = (♯‘{𝑒𝐸𝑈𝑒}))
11 fvex 6920 . . . . . . 7 (iEdg‘𝐺) ∈ V
1211dmex 7932 . . . . . 6 dom (iEdg‘𝐺) ∈ V
1312rabex 5345 . . . . 5 {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ∈ V
1413a1i 11 . . . 4 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ∈ V)
15 eqid 2735 . . . . 5 {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} = {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}}
16 eqeq1 2739 . . . . . 6 (𝑒 = 𝑐 → (𝑒 = {𝑈} ↔ 𝑐 = {𝑈}))
1716cbvrabv 3444 . . . . 5 {𝑒𝐸𝑒 = {𝑈}} = {𝑐𝐸𝑐 = {𝑈}}
18 eqid 2735 . . . . 5 (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ↦ ((iEdg‘𝐺)‘𝑥)) = (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ↦ ((iEdg‘𝐺)‘𝑥))
199, 5, 15, 17, 18ushgredgedgloop 29263 . . . 4 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ↦ ((iEdg‘𝐺)‘𝑥)):{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}}–1-1-onto→{𝑒𝐸𝑒 = {𝑈}})
2014, 19hasheqf1od 14389 . . 3 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}}) = (♯‘{𝑒𝐸𝑒 = {𝑈}}))
2110, 20oveq12d 7449 . 2 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → ((♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}})) = ((♯‘{𝑒𝐸𝑈𝑒}) +𝑒 (♯‘{𝑒𝐸𝑒 = {𝑈}})))
223, 8, 213eqtrd 2779 1 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (𝐷𝑈) = ((♯‘{𝑒𝐸𝑈𝑒}) +𝑒 (♯‘{𝑒𝐸𝑒 = {𝑈}})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  {crab 3433  Vcvv 3478  {csn 4631  cmpt 5231  dom cdm 5689  cfv 6563  (class class class)co 7431   +𝑒 cxad 13150  chash 14366  Vtxcvtx 29028  iEdgciedg 29029  Edgcedg 29079  USHGraphcushgr 29089  VtxDegcvtxdg 29498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-hash 14367  df-edg 29080  df-uhgr 29090  df-ushgr 29091  df-vtxdg 29499
This theorem is referenced by:  1loopgrvd2  29536
  Copyright terms: Public domain W3C validator