Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtxdushgrfvedg | Structured version Visualization version GIF version |
Description: The value of the vertex degree function for a simple hypergraph. (Contributed by AV, 12-Dec-2020.) (Proof shortened by AV, 5-May-2021.) |
Ref | Expression |
---|---|
vtxdushgrfvedg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxdushgrfvedg.e | ⊢ 𝐸 = (Edg‘𝐺) |
vtxdushgrfvedg.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
Ref | Expression |
---|---|
vtxdushgrfvedg | ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → (𝐷‘𝑈) = ((♯‘{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒}) +𝑒 (♯‘{𝑒 ∈ 𝐸 ∣ 𝑒 = {𝑈}}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdushgrfvedg.d | . . . 4 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
2 | 1 | fveq1i 6757 | . . 3 ⊢ (𝐷‘𝑈) = ((VtxDeg‘𝐺)‘𝑈) |
3 | 2 | a1i 11 | . 2 ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → (𝐷‘𝑈) = ((VtxDeg‘𝐺)‘𝑈)) |
4 | vtxdushgrfvedg.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | eqid 2738 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
6 | eqid 2738 | . . . 4 ⊢ dom (iEdg‘𝐺) = dom (iEdg‘𝐺) | |
7 | 4, 5, 6 | vtxdgval 27738 | . . 3 ⊢ (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}}))) |
8 | 7 | adantl 481 | . 2 ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}}))) |
9 | vtxdushgrfvedg.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
10 | 4, 9 | vtxdushgrfvedglem 27759 | . . 3 ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) = (♯‘{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒})) |
11 | fvex 6769 | . . . . . . 7 ⊢ (iEdg‘𝐺) ∈ V | |
12 | 11 | dmex 7732 | . . . . . 6 ⊢ dom (iEdg‘𝐺) ∈ V |
13 | 12 | rabex 5251 | . . . . 5 ⊢ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ∈ V |
14 | 13 | a1i 11 | . . . 4 ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ∈ V) |
15 | eqid 2738 | . . . . 5 ⊢ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} = {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} | |
16 | eqeq1 2742 | . . . . . 6 ⊢ (𝑒 = 𝑐 → (𝑒 = {𝑈} ↔ 𝑐 = {𝑈})) | |
17 | 16 | cbvrabv 3416 | . . . . 5 ⊢ {𝑒 ∈ 𝐸 ∣ 𝑒 = {𝑈}} = {𝑐 ∈ 𝐸 ∣ 𝑐 = {𝑈}} |
18 | eqid 2738 | . . . . 5 ⊢ (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ↦ ((iEdg‘𝐺)‘𝑥)) = (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ↦ ((iEdg‘𝐺)‘𝑥)) | |
19 | 9, 5, 15, 17, 18 | ushgredgedgloop 27501 | . . . 4 ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ↦ ((iEdg‘𝐺)‘𝑥)):{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}}–1-1-onto→{𝑒 ∈ 𝐸 ∣ 𝑒 = {𝑈}}) |
20 | 14, 19 | hasheqf1od 13996 | . . 3 ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}}) = (♯‘{𝑒 ∈ 𝐸 ∣ 𝑒 = {𝑈}})) |
21 | 10, 20 | oveq12d 7273 | . 2 ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → ((♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}})) = ((♯‘{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒}) +𝑒 (♯‘{𝑒 ∈ 𝐸 ∣ 𝑒 = {𝑈}}))) |
22 | 3, 8, 21 | 3eqtrd 2782 | 1 ⊢ ((𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉) → (𝐷‘𝑈) = ((♯‘{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒}) +𝑒 (♯‘{𝑒 ∈ 𝐸 ∣ 𝑒 = {𝑈}}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 {csn 4558 ↦ cmpt 5153 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 +𝑒 cxad 12775 ♯chash 13972 Vtxcvtx 27269 iEdgciedg 27270 Edgcedg 27320 USHGraphcushgr 27330 VtxDegcvtxdg 27735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-hash 13973 df-edg 27321 df-uhgr 27331 df-ushgr 27332 df-vtxdg 27736 |
This theorem is referenced by: 1loopgrvd2 27773 |
Copyright terms: Public domain | W3C validator |