MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdushgrfvedg Structured version   Visualization version   GIF version

Theorem vtxdushgrfvedg 29418
Description: The value of the vertex degree function for a simple hypergraph. (Contributed by AV, 12-Dec-2020.) (Proof shortened by AV, 5-May-2021.)
Hypotheses
Ref Expression
vtxdushgrfvedg.v 𝑉 = (Vtx‘𝐺)
vtxdushgrfvedg.e 𝐸 = (Edg‘𝐺)
vtxdushgrfvedg.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
vtxdushgrfvedg ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (𝐷𝑈) = ((♯‘{𝑒𝐸𝑈𝑒}) +𝑒 (♯‘{𝑒𝐸𝑒 = {𝑈}})))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑈,𝑒   𝑒,𝑉
Allowed substitution hint:   𝐷(𝑒)

Proof of Theorem vtxdushgrfvedg
Dummy variables 𝑐 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vtxdushgrfvedg.d . . . 4 𝐷 = (VtxDeg‘𝐺)
21fveq1i 6859 . . 3 (𝐷𝑈) = ((VtxDeg‘𝐺)‘𝑈)
32a1i 11 . 2 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (𝐷𝑈) = ((VtxDeg‘𝐺)‘𝑈))
4 vtxdushgrfvedg.v . . . 4 𝑉 = (Vtx‘𝐺)
5 eqid 2729 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
6 eqid 2729 . . . 4 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
74, 5, 6vtxdgval 29396 . . 3 (𝑈𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}})))
87adantl 481 . 2 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}})))
9 vtxdushgrfvedg.e . . . 4 𝐸 = (Edg‘𝐺)
104, 9vtxdushgrfvedglem 29417 . . 3 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) = (♯‘{𝑒𝐸𝑈𝑒}))
11 fvex 6871 . . . . . . 7 (iEdg‘𝐺) ∈ V
1211dmex 7885 . . . . . 6 dom (iEdg‘𝐺) ∈ V
1312rabex 5294 . . . . 5 {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ∈ V
1413a1i 11 . . . 4 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ∈ V)
15 eqid 2729 . . . . 5 {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} = {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}}
16 eqeq1 2733 . . . . . 6 (𝑒 = 𝑐 → (𝑒 = {𝑈} ↔ 𝑐 = {𝑈}))
1716cbvrabv 3416 . . . . 5 {𝑒𝐸𝑒 = {𝑈}} = {𝑐𝐸𝑐 = {𝑈}}
18 eqid 2729 . . . . 5 (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ↦ ((iEdg‘𝐺)‘𝑥)) = (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ↦ ((iEdg‘𝐺)‘𝑥))
199, 5, 15, 17, 18ushgredgedgloop 29158 . . . 4 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ↦ ((iEdg‘𝐺)‘𝑥)):{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}}–1-1-onto→{𝑒𝐸𝑒 = {𝑈}})
2014, 19hasheqf1od 14318 . . 3 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}}) = (♯‘{𝑒𝐸𝑒 = {𝑈}}))
2110, 20oveq12d 7405 . 2 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → ((♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}})) = ((♯‘{𝑒𝐸𝑈𝑒}) +𝑒 (♯‘{𝑒𝐸𝑒 = {𝑈}})))
223, 8, 213eqtrd 2768 1 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (𝐷𝑈) = ((♯‘{𝑒𝐸𝑈𝑒}) +𝑒 (♯‘{𝑒𝐸𝑒 = {𝑈}})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  {csn 4589  cmpt 5188  dom cdm 5638  cfv 6511  (class class class)co 7387   +𝑒 cxad 13070  chash 14295  Vtxcvtx 28923  iEdgciedg 28924  Edgcedg 28974  USHGraphcushgr 28984  VtxDegcvtxdg 29393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-hash 14296  df-edg 28975  df-uhgr 28985  df-ushgr 28986  df-vtxdg 29394
This theorem is referenced by:  1loopgrvd2  29431
  Copyright terms: Public domain W3C validator