MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdushgrfvedg Structured version   Visualization version   GIF version

Theorem vtxdushgrfvedg 29425
Description: The value of the vertex degree function for a simple hypergraph. (Contributed by AV, 12-Dec-2020.) (Proof shortened by AV, 5-May-2021.)
Hypotheses
Ref Expression
vtxdushgrfvedg.v 𝑉 = (Vtx‘𝐺)
vtxdushgrfvedg.e 𝐸 = (Edg‘𝐺)
vtxdushgrfvedg.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
vtxdushgrfvedg ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (𝐷𝑈) = ((♯‘{𝑒𝐸𝑈𝑒}) +𝑒 (♯‘{𝑒𝐸𝑒 = {𝑈}})))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑈,𝑒   𝑒,𝑉
Allowed substitution hint:   𝐷(𝑒)

Proof of Theorem vtxdushgrfvedg
Dummy variables 𝑐 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vtxdushgrfvedg.d . . . 4 𝐷 = (VtxDeg‘𝐺)
21fveq1i 6862 . . 3 (𝐷𝑈) = ((VtxDeg‘𝐺)‘𝑈)
32a1i 11 . 2 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (𝐷𝑈) = ((VtxDeg‘𝐺)‘𝑈))
4 vtxdushgrfvedg.v . . . 4 𝑉 = (Vtx‘𝐺)
5 eqid 2730 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
6 eqid 2730 . . . 4 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
74, 5, 6vtxdgval 29403 . . 3 (𝑈𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}})))
87adantl 481 . 2 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}})))
9 vtxdushgrfvedg.e . . . 4 𝐸 = (Edg‘𝐺)
104, 9vtxdushgrfvedglem 29424 . . 3 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) = (♯‘{𝑒𝐸𝑈𝑒}))
11 fvex 6874 . . . . . . 7 (iEdg‘𝐺) ∈ V
1211dmex 7888 . . . . . 6 dom (iEdg‘𝐺) ∈ V
1312rabex 5297 . . . . 5 {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ∈ V
1413a1i 11 . . . 4 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ∈ V)
15 eqid 2730 . . . . 5 {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} = {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}}
16 eqeq1 2734 . . . . . 6 (𝑒 = 𝑐 → (𝑒 = {𝑈} ↔ 𝑐 = {𝑈}))
1716cbvrabv 3419 . . . . 5 {𝑒𝐸𝑒 = {𝑈}} = {𝑐𝐸𝑐 = {𝑈}}
18 eqid 2730 . . . . 5 (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ↦ ((iEdg‘𝐺)‘𝑥)) = (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ↦ ((iEdg‘𝐺)‘𝑥))
199, 5, 15, 17, 18ushgredgedgloop 29165 . . . 4 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ↦ ((iEdg‘𝐺)‘𝑥)):{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}}–1-1-onto→{𝑒𝐸𝑒 = {𝑈}})
2014, 19hasheqf1od 14325 . . 3 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}}) = (♯‘{𝑒𝐸𝑒 = {𝑈}}))
2110, 20oveq12d 7408 . 2 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → ((♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}})) = ((♯‘{𝑒𝐸𝑈𝑒}) +𝑒 (♯‘{𝑒𝐸𝑒 = {𝑈}})))
223, 8, 213eqtrd 2769 1 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (𝐷𝑈) = ((♯‘{𝑒𝐸𝑈𝑒}) +𝑒 (♯‘{𝑒𝐸𝑒 = {𝑈}})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  {csn 4592  cmpt 5191  dom cdm 5641  cfv 6514  (class class class)co 7390   +𝑒 cxad 13077  chash 14302  Vtxcvtx 28930  iEdgciedg 28931  Edgcedg 28981  USHGraphcushgr 28991  VtxDegcvtxdg 29400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-hash 14303  df-edg 28982  df-uhgr 28992  df-ushgr 28993  df-vtxdg 29401
This theorem is referenced by:  1loopgrvd2  29438
  Copyright terms: Public domain W3C validator