MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdushgrfvedg Structured version   Visualization version   GIF version

Theorem vtxdushgrfvedg 29471
Description: The value of the vertex degree function for a simple hypergraph. (Contributed by AV, 12-Dec-2020.) (Proof shortened by AV, 5-May-2021.)
Hypotheses
Ref Expression
vtxdushgrfvedg.v 𝑉 = (Vtx‘𝐺)
vtxdushgrfvedg.e 𝐸 = (Edg‘𝐺)
vtxdushgrfvedg.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
vtxdushgrfvedg ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (𝐷𝑈) = ((♯‘{𝑒𝐸𝑈𝑒}) +𝑒 (♯‘{𝑒𝐸𝑒 = {𝑈}})))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑈,𝑒   𝑒,𝑉
Allowed substitution hint:   𝐷(𝑒)

Proof of Theorem vtxdushgrfvedg
Dummy variables 𝑐 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vtxdushgrfvedg.d . . . 4 𝐷 = (VtxDeg‘𝐺)
21fveq1i 6829 . . 3 (𝐷𝑈) = ((VtxDeg‘𝐺)‘𝑈)
32a1i 11 . 2 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (𝐷𝑈) = ((VtxDeg‘𝐺)‘𝑈))
4 vtxdushgrfvedg.v . . . 4 𝑉 = (Vtx‘𝐺)
5 eqid 2733 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
6 eqid 2733 . . . 4 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
74, 5, 6vtxdgval 29449 . . 3 (𝑈𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}})))
87adantl 481 . 2 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}})))
9 vtxdushgrfvedg.e . . . 4 𝐸 = (Edg‘𝐺)
104, 9vtxdushgrfvedglem 29470 . . 3 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) = (♯‘{𝑒𝐸𝑈𝑒}))
11 fvex 6841 . . . . . . 7 (iEdg‘𝐺) ∈ V
1211dmex 7845 . . . . . 6 dom (iEdg‘𝐺) ∈ V
1312rabex 5279 . . . . 5 {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ∈ V
1413a1i 11 . . . 4 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ∈ V)
15 eqid 2733 . . . . 5 {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} = {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}}
16 eqeq1 2737 . . . . . 6 (𝑒 = 𝑐 → (𝑒 = {𝑈} ↔ 𝑐 = {𝑈}))
1716cbvrabv 3406 . . . . 5 {𝑒𝐸𝑒 = {𝑈}} = {𝑐𝐸𝑐 = {𝑈}}
18 eqid 2733 . . . . 5 (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ↦ ((iEdg‘𝐺)‘𝑥)) = (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ↦ ((iEdg‘𝐺)‘𝑥))
199, 5, 15, 17, 18ushgredgedgloop 29211 . . . 4 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (𝑥 ∈ {𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}} ↦ ((iEdg‘𝐺)‘𝑥)):{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}}–1-1-onto→{𝑒𝐸𝑒 = {𝑈}})
2014, 19hasheqf1od 14262 . . 3 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}}) = (♯‘{𝑒𝐸𝑒 = {𝑈}}))
2110, 20oveq12d 7370 . 2 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → ((♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ 𝑈 ∈ ((iEdg‘𝐺)‘𝑖)}) +𝑒 (♯‘{𝑖 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑖) = {𝑈}})) = ((♯‘{𝑒𝐸𝑈𝑒}) +𝑒 (♯‘{𝑒𝐸𝑒 = {𝑈}})))
223, 8, 213eqtrd 2772 1 ((𝐺 ∈ USHGraph ∧ 𝑈𝑉) → (𝐷𝑈) = ((♯‘{𝑒𝐸𝑈𝑒}) +𝑒 (♯‘{𝑒𝐸𝑒 = {𝑈}})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  {csn 4575  cmpt 5174  dom cdm 5619  cfv 6486  (class class class)co 7352   +𝑒 cxad 13011  chash 14239  Vtxcvtx 28976  iEdgciedg 28977  Edgcedg 29027  USHGraphcushgr 29037  VtxDegcvtxdg 29446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-hash 14240  df-edg 29028  df-uhgr 29038  df-ushgr 29039  df-vtxdg 29447
This theorem is referenced by:  1loopgrvd2  29484
  Copyright terms: Public domain W3C validator