| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtxdlfgrval | Structured version Visualization version GIF version | ||
| Description: The value of the vertex degree function for a loop-free graph 𝐺. (Contributed by AV, 23-Feb-2021.) |
| Ref | Expression |
|---|---|
| vtxdlfgrval.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| vtxdlfgrval.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| vtxdlfgrval.a | ⊢ 𝐴 = dom 𝐼 |
| vtxdlfgrval.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
| Ref | Expression |
|---|---|
| vtxdlfgrval | ⊢ ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈 ∈ 𝑉) → (𝐷‘𝑈) = (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdlfgrval.d | . . . 4 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
| 2 | 1 | fveq1i 6823 | . . 3 ⊢ (𝐷‘𝑈) = ((VtxDeg‘𝐺)‘𝑈) |
| 3 | vtxdlfgrval.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | vtxdlfgrval.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 5 | vtxdlfgrval.a | . . . . 5 ⊢ 𝐴 = dom 𝐼 | |
| 6 | 3, 4, 5 | vtxdgval 29445 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) |
| 7 | 6 | adantl 481 | . . 3 ⊢ ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) |
| 8 | 2, 7 | eqtrid 2778 | . 2 ⊢ ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈 ∈ 𝑉) → (𝐷‘𝑈) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) |
| 9 | eqid 2731 | . . . . . . 7 ⊢ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} | |
| 10 | 4, 5, 9 | lfgrnloop 29101 | . . . . . 6 ⊢ (𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}} = ∅) |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈 ∈ 𝑉) → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}} = ∅) |
| 12 | 11 | fveq2d 6826 | . . . 4 ⊢ ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈 ∈ 𝑉) → (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}) = (♯‘∅)) |
| 13 | hash0 14271 | . . . 4 ⊢ (♯‘∅) = 0 | |
| 14 | 12, 13 | eqtrdi 2782 | . . 3 ⊢ ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈 ∈ 𝑉) → (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}) = 0) |
| 15 | 14 | oveq2d 7362 | . 2 ⊢ ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈 ∈ 𝑉) → ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}})) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 0)) |
| 16 | 4 | dmeqi 5844 | . . . . . . 7 ⊢ dom 𝐼 = dom (iEdg‘𝐺) |
| 17 | 5, 16 | eqtri 2754 | . . . . . 6 ⊢ 𝐴 = dom (iEdg‘𝐺) |
| 18 | fvex 6835 | . . . . . . 7 ⊢ (iEdg‘𝐺) ∈ V | |
| 19 | 18 | dmex 7839 | . . . . . 6 ⊢ dom (iEdg‘𝐺) ∈ V |
| 20 | 17, 19 | eqeltri 2827 | . . . . 5 ⊢ 𝐴 ∈ V |
| 21 | 20 | rabex 5277 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)} ∈ V |
| 22 | hashxnn0 14243 | . . . 4 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)} ∈ V → (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) ∈ ℕ0*) | |
| 23 | xnn0xr 12456 | . . . 4 ⊢ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) ∈ ℕ0* → (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) ∈ ℝ*) | |
| 24 | 21, 22, 23 | mp2b 10 | . . 3 ⊢ (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) ∈ ℝ* |
| 25 | xaddrid 13137 | . . 3 ⊢ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) ∈ ℝ* → ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 0) = (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)})) | |
| 26 | 24, 25 | mp1i 13 | . 2 ⊢ ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈 ∈ 𝑉) → ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 0) = (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)})) |
| 27 | 8, 15, 26 | 3eqtrd 2770 | 1 ⊢ ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈 ∈ 𝑉) → (𝐷‘𝑈) = (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ∅c0 4283 𝒫 cpw 4550 {csn 4576 class class class wbr 5091 dom cdm 5616 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 0cc0 11003 ℝ*cxr 11142 ≤ cle 11144 2c2 12177 ℕ0*cxnn0 12451 +𝑒 cxad 13006 ♯chash 14234 Vtxcvtx 28972 iEdgciedg 28973 VtxDegcvtxdg 29442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-n0 12379 df-xnn0 12452 df-z 12466 df-uz 12730 df-xadd 13009 df-fz 13405 df-hash 14235 df-vtxdg 29443 |
| This theorem is referenced by: vtxdumgrval 29463 1hevtxdg1 29483 |
| Copyright terms: Public domain | W3C validator |