MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdlfgrval Structured version   Visualization version   GIF version

Theorem vtxdlfgrval 27573
Description: The value of the vertex degree function for a loop-free graph 𝐺. (Contributed by AV, 23-Feb-2021.)
Hypotheses
Ref Expression
vtxdlfgrval.v 𝑉 = (Vtx‘𝐺)
vtxdlfgrval.i 𝐼 = (iEdg‘𝐺)
vtxdlfgrval.a 𝐴 = dom 𝐼
vtxdlfgrval.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
vtxdlfgrval ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈𝑉) → (𝐷𝑈) = (♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝐼   𝑥,𝑈   𝑥,𝑉
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem vtxdlfgrval
StepHypRef Expression
1 vtxdlfgrval.d . . . 4 𝐷 = (VtxDeg‘𝐺)
21fveq1i 6718 . . 3 (𝐷𝑈) = ((VtxDeg‘𝐺)‘𝑈)
3 vtxdlfgrval.v . . . . 5 𝑉 = (Vtx‘𝐺)
4 vtxdlfgrval.i . . . . 5 𝐼 = (iEdg‘𝐺)
5 vtxdlfgrval.a . . . . 5 𝐴 = dom 𝐼
63, 4, 5vtxdgval 27556 . . . 4 (𝑈𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
76adantl 485 . . 3 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
82, 7syl5eq 2790 . 2 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈𝑉) → (𝐷𝑈) = ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})))
9 eqid 2737 . . . . . . 7 {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}
104, 5, 9lfgrnloop 27216 . . . . . 6 (𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → {𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}} = ∅)
1110adantr 484 . . . . 5 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈𝑉) → {𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}} = ∅)
1211fveq2d 6721 . . . 4 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈𝑉) → (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}}) = (♯‘∅))
13 hash0 13934 . . . 4 (♯‘∅) = 0
1412, 13eqtrdi 2794 . . 3 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈𝑉) → (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}}) = 0)
1514oveq2d 7229 . 2 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈𝑉) → ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 (♯‘{𝑥𝐴 ∣ (𝐼𝑥) = {𝑈}})) = ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 0))
164dmeqi 5773 . . . . . . 7 dom 𝐼 = dom (iEdg‘𝐺)
175, 16eqtri 2765 . . . . . 6 𝐴 = dom (iEdg‘𝐺)
18 fvex 6730 . . . . . . 7 (iEdg‘𝐺) ∈ V
1918dmex 7689 . . . . . 6 dom (iEdg‘𝐺) ∈ V
2017, 19eqeltri 2834 . . . . 5 𝐴 ∈ V
2120rabex 5225 . . . 4 {𝑥𝐴𝑈 ∈ (𝐼𝑥)} ∈ V
22 hashxnn0 13905 . . . 4 ({𝑥𝐴𝑈 ∈ (𝐼𝑥)} ∈ V → (♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℕ0*)
23 xnn0xr 12167 . . . 4 ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℕ0* → (♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℝ*)
2421, 22, 23mp2b 10 . . 3 (♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℝ*
25 xaddid1 12831 . . 3 ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) ∈ ℝ* → ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 0) = (♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}))
2624, 25mp1i 13 . 2 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈𝑉) → ((♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}) +𝑒 0) = (♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}))
278, 15, 263eqtrd 2781 1 ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈𝑉) → (𝐷𝑈) = (♯‘{𝑥𝐴𝑈 ∈ (𝐼𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  {crab 3065  Vcvv 3408  c0 4237  𝒫 cpw 4513  {csn 4541   class class class wbr 5053  dom cdm 5551  wf 6376  cfv 6380  (class class class)co 7213  0cc0 10729  *cxr 10866  cle 10868  2c2 11885  0*cxnn0 12162   +𝑒 cxad 12702  chash 13896  Vtxcvtx 27087  iEdgciedg 27088  VtxDegcvtxdg 27553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-n0 12091  df-xnn0 12163  df-z 12177  df-uz 12439  df-xadd 12705  df-fz 13096  df-hash 13897  df-vtxdg 27554
This theorem is referenced by:  vtxdumgrval  27574  1hevtxdg1  27594
  Copyright terms: Public domain W3C validator