| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtxdlfgrval | Structured version Visualization version GIF version | ||
| Description: The value of the vertex degree function for a loop-free graph 𝐺. (Contributed by AV, 23-Feb-2021.) |
| Ref | Expression |
|---|---|
| vtxdlfgrval.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| vtxdlfgrval.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| vtxdlfgrval.a | ⊢ 𝐴 = dom 𝐼 |
| vtxdlfgrval.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
| Ref | Expression |
|---|---|
| vtxdlfgrval | ⊢ ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈 ∈ 𝑉) → (𝐷‘𝑈) = (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdlfgrval.d | . . . 4 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
| 2 | 1 | fveq1i 6829 | . . 3 ⊢ (𝐷‘𝑈) = ((VtxDeg‘𝐺)‘𝑈) |
| 3 | vtxdlfgrval.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | vtxdlfgrval.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 5 | vtxdlfgrval.a | . . . . 5 ⊢ 𝐴 = dom 𝐼 | |
| 6 | 3, 4, 5 | vtxdgval 29449 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) |
| 7 | 6 | adantl 481 | . . 3 ⊢ ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) |
| 8 | 2, 7 | eqtrid 2780 | . 2 ⊢ ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈 ∈ 𝑉) → (𝐷‘𝑈) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) |
| 9 | eqid 2733 | . . . . . . 7 ⊢ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} | |
| 10 | 4, 5, 9 | lfgrnloop 29105 | . . . . . 6 ⊢ (𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}} = ∅) |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈 ∈ 𝑉) → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}} = ∅) |
| 12 | 11 | fveq2d 6832 | . . . 4 ⊢ ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈 ∈ 𝑉) → (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}) = (♯‘∅)) |
| 13 | hash0 14276 | . . . 4 ⊢ (♯‘∅) = 0 | |
| 14 | 12, 13 | eqtrdi 2784 | . . 3 ⊢ ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈 ∈ 𝑉) → (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}) = 0) |
| 15 | 14 | oveq2d 7368 | . 2 ⊢ ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈 ∈ 𝑉) → ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}})) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 0)) |
| 16 | 4 | dmeqi 5848 | . . . . . . 7 ⊢ dom 𝐼 = dom (iEdg‘𝐺) |
| 17 | 5, 16 | eqtri 2756 | . . . . . 6 ⊢ 𝐴 = dom (iEdg‘𝐺) |
| 18 | fvex 6841 | . . . . . . 7 ⊢ (iEdg‘𝐺) ∈ V | |
| 19 | 18 | dmex 7845 | . . . . . 6 ⊢ dom (iEdg‘𝐺) ∈ V |
| 20 | 17, 19 | eqeltri 2829 | . . . . 5 ⊢ 𝐴 ∈ V |
| 21 | 20 | rabex 5279 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)} ∈ V |
| 22 | hashxnn0 14248 | . . . 4 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)} ∈ V → (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) ∈ ℕ0*) | |
| 23 | xnn0xr 12466 | . . . 4 ⊢ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) ∈ ℕ0* → (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) ∈ ℝ*) | |
| 24 | 21, 22, 23 | mp2b 10 | . . 3 ⊢ (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) ∈ ℝ* |
| 25 | xaddrid 13142 | . . 3 ⊢ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) ∈ ℝ* → ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 0) = (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)})) | |
| 26 | 24, 25 | mp1i 13 | . 2 ⊢ ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈 ∈ 𝑉) → ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 0) = (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)})) |
| 27 | 8, 15, 26 | 3eqtrd 2772 | 1 ⊢ ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈 ∈ 𝑉) → (𝐷‘𝑈) = (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 Vcvv 3437 ∅c0 4282 𝒫 cpw 4549 {csn 4575 class class class wbr 5093 dom cdm 5619 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 0cc0 11013 ℝ*cxr 11152 ≤ cle 11154 2c2 12187 ℕ0*cxnn0 12461 +𝑒 cxad 13011 ♯chash 14239 Vtxcvtx 28976 iEdgciedg 28977 VtxDegcvtxdg 29446 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-n0 12389 df-xnn0 12462 df-z 12476 df-uz 12739 df-xadd 13014 df-fz 13410 df-hash 14240 df-vtxdg 29447 |
| This theorem is referenced by: vtxdumgrval 29467 1hevtxdg1 29487 |
| Copyright terms: Public domain | W3C validator |