| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtxdlfgrval | Structured version Visualization version GIF version | ||
| Description: The value of the vertex degree function for a loop-free graph 𝐺. (Contributed by AV, 23-Feb-2021.) |
| Ref | Expression |
|---|---|
| vtxdlfgrval.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| vtxdlfgrval.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| vtxdlfgrval.a | ⊢ 𝐴 = dom 𝐼 |
| vtxdlfgrval.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
| Ref | Expression |
|---|---|
| vtxdlfgrval | ⊢ ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈 ∈ 𝑉) → (𝐷‘𝑈) = (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdlfgrval.d | . . . 4 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
| 2 | 1 | fveq1i 6859 | . . 3 ⊢ (𝐷‘𝑈) = ((VtxDeg‘𝐺)‘𝑈) |
| 3 | vtxdlfgrval.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | vtxdlfgrval.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 5 | vtxdlfgrval.a | . . . . 5 ⊢ 𝐴 = dom 𝐼 | |
| 6 | 3, 4, 5 | vtxdgval 29396 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) |
| 7 | 6 | adantl 481 | . . 3 ⊢ ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑈) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) |
| 8 | 2, 7 | eqtrid 2776 | . 2 ⊢ ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈 ∈ 𝑉) → (𝐷‘𝑈) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}))) |
| 9 | eqid 2729 | . . . . . . 7 ⊢ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} | |
| 10 | 4, 5, 9 | lfgrnloop 29052 | . . . . . 6 ⊢ (𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}} = ∅) |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈 ∈ 𝑉) → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}} = ∅) |
| 12 | 11 | fveq2d 6862 | . . . 4 ⊢ ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈 ∈ 𝑉) → (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}) = (♯‘∅)) |
| 13 | hash0 14332 | . . . 4 ⊢ (♯‘∅) = 0 | |
| 14 | 12, 13 | eqtrdi 2780 | . . 3 ⊢ ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈 ∈ 𝑉) → (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}}) = 0) |
| 15 | 14 | oveq2d 7403 | . 2 ⊢ ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈 ∈ 𝑉) → ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}})) = ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 0)) |
| 16 | 4 | dmeqi 5868 | . . . . . . 7 ⊢ dom 𝐼 = dom (iEdg‘𝐺) |
| 17 | 5, 16 | eqtri 2752 | . . . . . 6 ⊢ 𝐴 = dom (iEdg‘𝐺) |
| 18 | fvex 6871 | . . . . . . 7 ⊢ (iEdg‘𝐺) ∈ V | |
| 19 | 18 | dmex 7885 | . . . . . 6 ⊢ dom (iEdg‘𝐺) ∈ V |
| 20 | 17, 19 | eqeltri 2824 | . . . . 5 ⊢ 𝐴 ∈ V |
| 21 | 20 | rabex 5294 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)} ∈ V |
| 22 | hashxnn0 14304 | . . . 4 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)} ∈ V → (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) ∈ ℕ0*) | |
| 23 | xnn0xr 12520 | . . . 4 ⊢ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) ∈ ℕ0* → (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) ∈ ℝ*) | |
| 24 | 21, 22, 23 | mp2b 10 | . . 3 ⊢ (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) ∈ ℝ* |
| 25 | xaddrid 13201 | . . 3 ⊢ ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) ∈ ℝ* → ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 0) = (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)})) | |
| 26 | 24, 25 | mp1i 13 | . 2 ⊢ ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈 ∈ 𝑉) → ((♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)}) +𝑒 0) = (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)})) |
| 27 | 8, 15, 26 | 3eqtrd 2768 | 1 ⊢ ((𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝑈 ∈ 𝑉) → (𝐷‘𝑈) = (♯‘{𝑥 ∈ 𝐴 ∣ 𝑈 ∈ (𝐼‘𝑥)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 ∅c0 4296 𝒫 cpw 4563 {csn 4589 class class class wbr 5107 dom cdm 5638 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 0cc0 11068 ℝ*cxr 11207 ≤ cle 11209 2c2 12241 ℕ0*cxnn0 12515 +𝑒 cxad 13070 ♯chash 14295 Vtxcvtx 28923 iEdgciedg 28924 VtxDegcvtxdg 29393 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-xadd 13073 df-fz 13469 df-hash 14296 df-vtxdg 29394 |
| This theorem is referenced by: vtxdumgrval 29414 1hevtxdg1 29434 |
| Copyright terms: Public domain | W3C validator |