Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnfoctbdj Structured version   Visualization version   GIF version

Theorem nnfoctbdj 46412
Description: There exists a mapping from onto any (nonempty) countable set of disjoint sets, such that elements in the range of the map are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
nnfoctbdj.ctb (𝜑𝑋 ≼ ω)
nnfoctbdj.n0 (𝜑𝑋 ≠ ∅)
nnfoctbdj.dj (𝜑Disj 𝑦𝑋 𝑦)
Assertion
Ref Expression
nnfoctbdj (𝜑 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)))
Distinct variable groups:   𝑓,𝑋,𝑛   𝑦,𝑋,𝑛   𝜑,𝑛,𝑦
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem nnfoctbdj
Dummy variables 𝑔 𝑥 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnfoctbdj.ctb . . 3 (𝜑𝑋 ≼ ω)
2 nnfoctbdj.n0 . . 3 (𝜑𝑋 ≠ ∅)
3 nnfoctb 44987 . . 3 ((𝑋 ≼ ω ∧ 𝑋 ≠ ∅) → ∃𝑔 𝑔:ℕ–onto𝑋)
41, 2, 3syl2anc 584 . 2 (𝜑 → ∃𝑔 𝑔:ℕ–onto𝑋)
5 fofn 6823 . . . . . . 7 (𝑔:ℕ–onto𝑋𝑔 Fn ℕ)
65adantl 481 . . . . . 6 ((𝜑𝑔:ℕ–onto𝑋) → 𝑔 Fn ℕ)
7 nnex 12270 . . . . . . 7 ℕ ∈ V
87a1i 11 . . . . . 6 ((𝜑𝑔:ℕ–onto𝑋) → ℕ ∈ V)
9 ltwenn 14000 . . . . . . 7 < We ℕ
109a1i 11 . . . . . 6 ((𝜑𝑔:ℕ–onto𝑋) → < We ℕ)
116, 8, 10wessf1orn 45129 . . . . 5 ((𝜑𝑔:ℕ–onto𝑋) → ∃𝑥 ∈ 𝒫 ℕ(𝑔𝑥):𝑥1-1-onto→ran 𝑔)
12 elpwi 4612 . . . . . . . . 9 (𝑥 ∈ 𝒫 ℕ → 𝑥 ⊆ ℕ)
13123ad2ant2 1133 . . . . . . . 8 (((𝜑𝑔:ℕ–onto𝑋) ∧ 𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → 𝑥 ⊆ ℕ)
14 simpr 484 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝑋 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):𝑥1-1-onto→ran 𝑔)
15 forn 6824 . . . . . . . . . . . . 13 (𝑔:ℕ–onto𝑋 → ran 𝑔 = 𝑋)
1615adantr 480 . . . . . . . . . . . 12 ((𝑔:ℕ–onto𝑋 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → ran 𝑔 = 𝑋)
1716f1oeq3d 6846 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝑋 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → ((𝑔𝑥):𝑥1-1-onto→ran 𝑔 ↔ (𝑔𝑥):𝑥1-1-onto𝑋))
1814, 17mpbid 232 . . . . . . . . . 10 ((𝑔:ℕ–onto𝑋 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):𝑥1-1-onto𝑋)
1918adantll 714 . . . . . . . . 9 (((𝜑𝑔:ℕ–onto𝑋) ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):𝑥1-1-onto𝑋)
20193adant2 1130 . . . . . . . 8 (((𝜑𝑔:ℕ–onto𝑋) ∧ 𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):𝑥1-1-onto𝑋)
21 nnfoctbdj.dj . . . . . . . . . 10 (𝜑Disj 𝑦𝑋 𝑦)
2221adantr 480 . . . . . . . . 9 ((𝜑𝑔:ℕ–onto𝑋) → Disj 𝑦𝑋 𝑦)
23223ad2ant1 1132 . . . . . . . 8 (((𝜑𝑔:ℕ–onto𝑋) ∧ 𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → Disj 𝑦𝑋 𝑦)
24 eqeq1 2739 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑚 = 1 ↔ 𝑛 = 1))
25 oveq1 7438 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑚 − 1) = (𝑛 − 1))
2625eleq1d 2824 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑚 − 1) ∈ 𝑥 ↔ (𝑛 − 1) ∈ 𝑥))
2726notbid 318 . . . . . . . . . . 11 (𝑚 = 𝑛 → (¬ (𝑚 − 1) ∈ 𝑥 ↔ ¬ (𝑛 − 1) ∈ 𝑥))
2824, 27orbi12d 918 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝑥) ↔ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝑥)))
29 fvoveq1 7454 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝑔𝑥)‘(𝑚 − 1)) = ((𝑔𝑥)‘(𝑛 − 1)))
3028, 29ifbieq2d 4557 . . . . . . . . 9 (𝑚 = 𝑛 → if((𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝑥), ∅, ((𝑔𝑥)‘(𝑚 − 1))) = if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝑥), ∅, ((𝑔𝑥)‘(𝑛 − 1))))
3130cbvmptv 5261 . . . . . . . 8 (𝑚 ∈ ℕ ↦ if((𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝑥), ∅, ((𝑔𝑥)‘(𝑚 − 1)))) = (𝑛 ∈ ℕ ↦ if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝑥), ∅, ((𝑔𝑥)‘(𝑛 − 1))))
3213, 20, 23, 31nnfoctbdjlem 46411 . . . . . . 7 (((𝜑𝑔:ℕ–onto𝑋) ∧ 𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)))
33323exp 1118 . . . . . 6 ((𝜑𝑔:ℕ–onto𝑋) → (𝑥 ∈ 𝒫 ℕ → ((𝑔𝑥):𝑥1-1-onto→ran 𝑔 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)))))
3433rexlimdv 3151 . . . . 5 ((𝜑𝑔:ℕ–onto𝑋) → (∃𝑥 ∈ 𝒫 ℕ(𝑔𝑥):𝑥1-1-onto→ran 𝑔 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛))))
3511, 34mpd 15 . . . 4 ((𝜑𝑔:ℕ–onto𝑋) → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)))
3635ex 412 . . 3 (𝜑 → (𝑔:ℕ–onto𝑋 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛))))
3736exlimdv 1931 . 2 (𝜑 → (∃𝑔 𝑔:ℕ–onto𝑋 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛))))
384, 37mpd 15 1 (𝜑 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1537  wex 1776  wcel 2106  wne 2938  wrex 3068  Vcvv 3478  cun 3961  wss 3963  c0 4339  ifcif 4531  𝒫 cpw 4605  {csn 4631  Disj wdisj 5115   class class class wbr 5148  cmpt 5231   We wwe 5640  ran crn 5690  cres 5691   Fn wfn 6558  ontowfo 6561  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  ωcom 7887  cdom 8982  1c1 11154   < clt 11293  cmin 11490  cn 12264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033
This theorem is referenced by:  ismeannd  46423
  Copyright terms: Public domain W3C validator