Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnfoctbdj Structured version   Visualization version   GIF version

Theorem nnfoctbdj 42728
Description: There exists a mapping from onto any (nonempty) countable set of disjoint sets, such that elements in the range of the map are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
nnfoctbdj.ctb (𝜑𝑋 ≼ ω)
nnfoctbdj.n0 (𝜑𝑋 ≠ ∅)
nnfoctbdj.dj (𝜑Disj 𝑦𝑋 𝑦)
Assertion
Ref Expression
nnfoctbdj (𝜑 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)))
Distinct variable groups:   𝑓,𝑋,𝑛   𝑦,𝑋,𝑛   𝜑,𝑛,𝑦
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem nnfoctbdj
Dummy variables 𝑔 𝑥 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnfoctbdj.ctb . . 3 (𝜑𝑋 ≼ ω)
2 nnfoctbdj.n0 . . 3 (𝜑𝑋 ≠ ∅)
3 nnfoctb 41299 . . 3 ((𝑋 ≼ ω ∧ 𝑋 ≠ ∅) → ∃𝑔 𝑔:ℕ–onto𝑋)
41, 2, 3syl2anc 586 . 2 (𝜑 → ∃𝑔 𝑔:ℕ–onto𝑋)
5 fofn 6585 . . . . . . 7 (𝑔:ℕ–onto𝑋𝑔 Fn ℕ)
65adantl 484 . . . . . 6 ((𝜑𝑔:ℕ–onto𝑋) → 𝑔 Fn ℕ)
7 nnex 11636 . . . . . . 7 ℕ ∈ V
87a1i 11 . . . . . 6 ((𝜑𝑔:ℕ–onto𝑋) → ℕ ∈ V)
9 ltwenn 13322 . . . . . . 7 < We ℕ
109a1i 11 . . . . . 6 ((𝜑𝑔:ℕ–onto𝑋) → < We ℕ)
116, 8, 10wessf1orn 41435 . . . . 5 ((𝜑𝑔:ℕ–onto𝑋) → ∃𝑥 ∈ 𝒫 ℕ(𝑔𝑥):𝑥1-1-onto→ran 𝑔)
12 elpwi 4549 . . . . . . . . 9 (𝑥 ∈ 𝒫 ℕ → 𝑥 ⊆ ℕ)
13123ad2ant2 1129 . . . . . . . 8 (((𝜑𝑔:ℕ–onto𝑋) ∧ 𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → 𝑥 ⊆ ℕ)
14 simpr 487 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝑋 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):𝑥1-1-onto→ran 𝑔)
15 forn 6586 . . . . . . . . . . . . 13 (𝑔:ℕ–onto𝑋 → ran 𝑔 = 𝑋)
1615adantr 483 . . . . . . . . . . . 12 ((𝑔:ℕ–onto𝑋 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → ran 𝑔 = 𝑋)
1716f1oeq3d 6605 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝑋 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → ((𝑔𝑥):𝑥1-1-onto→ran 𝑔 ↔ (𝑔𝑥):𝑥1-1-onto𝑋))
1814, 17mpbid 234 . . . . . . . . . 10 ((𝑔:ℕ–onto𝑋 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):𝑥1-1-onto𝑋)
1918adantll 712 . . . . . . . . 9 (((𝜑𝑔:ℕ–onto𝑋) ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):𝑥1-1-onto𝑋)
20193adant2 1126 . . . . . . . 8 (((𝜑𝑔:ℕ–onto𝑋) ∧ 𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):𝑥1-1-onto𝑋)
21 nnfoctbdj.dj . . . . . . . . . 10 (𝜑Disj 𝑦𝑋 𝑦)
2221adantr 483 . . . . . . . . 9 ((𝜑𝑔:ℕ–onto𝑋) → Disj 𝑦𝑋 𝑦)
23223ad2ant1 1128 . . . . . . . 8 (((𝜑𝑔:ℕ–onto𝑋) ∧ 𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → Disj 𝑦𝑋 𝑦)
24 eqeq1 2823 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑚 = 1 ↔ 𝑛 = 1))
25 oveq1 7155 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑚 − 1) = (𝑛 − 1))
2625eleq1d 2895 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑚 − 1) ∈ 𝑥 ↔ (𝑛 − 1) ∈ 𝑥))
2726notbid 320 . . . . . . . . . . 11 (𝑚 = 𝑛 → (¬ (𝑚 − 1) ∈ 𝑥 ↔ ¬ (𝑛 − 1) ∈ 𝑥))
2824, 27orbi12d 915 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝑥) ↔ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝑥)))
29 fvoveq1 7171 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝑔𝑥)‘(𝑚 − 1)) = ((𝑔𝑥)‘(𝑛 − 1)))
3028, 29ifbieq2d 4490 . . . . . . . . 9 (𝑚 = 𝑛 → if((𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝑥), ∅, ((𝑔𝑥)‘(𝑚 − 1))) = if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝑥), ∅, ((𝑔𝑥)‘(𝑛 − 1))))
3130cbvmptv 5160 . . . . . . . 8 (𝑚 ∈ ℕ ↦ if((𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝑥), ∅, ((𝑔𝑥)‘(𝑚 − 1)))) = (𝑛 ∈ ℕ ↦ if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝑥), ∅, ((𝑔𝑥)‘(𝑛 − 1))))
3213, 20, 23, 31nnfoctbdjlem 42727 . . . . . . 7 (((𝜑𝑔:ℕ–onto𝑋) ∧ 𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)))
33323exp 1114 . . . . . 6 ((𝜑𝑔:ℕ–onto𝑋) → (𝑥 ∈ 𝒫 ℕ → ((𝑔𝑥):𝑥1-1-onto→ran 𝑔 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)))))
3433rexlimdv 3281 . . . . 5 ((𝜑𝑔:ℕ–onto𝑋) → (∃𝑥 ∈ 𝒫 ℕ(𝑔𝑥):𝑥1-1-onto→ran 𝑔 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛))))
3511, 34mpd 15 . . . 4 ((𝜑𝑔:ℕ–onto𝑋) → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)))
3635ex 415 . . 3 (𝜑 → (𝑔:ℕ–onto𝑋 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛))))
3736exlimdv 1928 . 2 (𝜑 → (∃𝑔 𝑔:ℕ–onto𝑋 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛))))
384, 37mpd 15 1 (𝜑 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843  w3a 1082   = wceq 1531  wex 1774  wcel 2108  wne 3014  wrex 3137  Vcvv 3493  cun 3932  wss 3934  c0 4289  ifcif 4465  𝒫 cpw 4537  {csn 4559  Disj wdisj 5022   class class class wbr 5057  cmpt 5137   We wwe 5506  ran crn 5549  cres 5550   Fn wfn 6343  ontowfo 6346  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7148  ωcom 7572  cdom 8499  1c1 10530   < clt 10667  cmin 10862  cn 11630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-disj 5023  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382
This theorem is referenced by:  ismeannd  42739
  Copyright terms: Public domain W3C validator