Step | Hyp | Ref
| Expression |
1 | | nnfoctbdj.ctb |
. . 3
⊢ (𝜑 → 𝑋 ≼ ω) |
2 | | nnfoctbdj.n0 |
. . 3
⊢ (𝜑 → 𝑋 ≠ ∅) |
3 | | nnfoctb 42039 |
. . 3
⊢ ((𝑋 ≼ ω ∧ 𝑋 ≠ ∅) →
∃𝑔 𝑔:ℕ–onto→𝑋) |
4 | 1, 2, 3 | syl2anc 588 |
. 2
⊢ (𝜑 → ∃𝑔 𝑔:ℕ–onto→𝑋) |
5 | | fofn 6571 |
. . . . . . 7
⊢ (𝑔:ℕ–onto→𝑋 → 𝑔 Fn ℕ) |
6 | 5 | adantl 486 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔:ℕ–onto→𝑋) → 𝑔 Fn ℕ) |
7 | | nnex 11665 |
. . . . . . 7
⊢ ℕ
∈ V |
8 | 7 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔:ℕ–onto→𝑋) → ℕ ∈ V) |
9 | | ltwenn 13364 |
. . . . . . 7
⊢ < We
ℕ |
10 | 9 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔:ℕ–onto→𝑋) → < We ℕ) |
11 | 6, 8, 10 | wessf1orn 42167 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔:ℕ–onto→𝑋) → ∃𝑥 ∈ 𝒫 ℕ(𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔) |
12 | | elpwi 4496 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝒫 ℕ →
𝑥 ⊆
ℕ) |
13 | 12 | 3ad2ant2 1132 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑔:ℕ–onto→𝑋) ∧ 𝑥 ∈ 𝒫 ℕ ∧ (𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔) → 𝑥 ⊆
ℕ) |
14 | | simpr 489 |
. . . . . . . . . . 11
⊢ ((𝑔:ℕ–onto→𝑋 ∧ (𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔) → (𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔) |
15 | | forn 6572 |
. . . . . . . . . . . . 13
⊢ (𝑔:ℕ–onto→𝑋 → ran 𝑔 = 𝑋) |
16 | 15 | adantr 485 |
. . . . . . . . . . . 12
⊢ ((𝑔:ℕ–onto→𝑋 ∧ (𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔) → ran 𝑔 = 𝑋) |
17 | 16 | f1oeq3d 6592 |
. . . . . . . . . . 11
⊢ ((𝑔:ℕ–onto→𝑋 ∧ (𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔) → ((𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔 ↔ (𝑔 ↾ 𝑥):𝑥–1-1-onto→𝑋)) |
18 | 14, 17 | mpbid 235 |
. . . . . . . . . 10
⊢ ((𝑔:ℕ–onto→𝑋 ∧ (𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔) → (𝑔 ↾ 𝑥):𝑥–1-1-onto→𝑋) |
19 | 18 | adantll 714 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔:ℕ–onto→𝑋) ∧ (𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔) → (𝑔 ↾ 𝑥):𝑥–1-1-onto→𝑋) |
20 | 19 | 3adant2 1129 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑔:ℕ–onto→𝑋) ∧ 𝑥 ∈ 𝒫 ℕ ∧ (𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔) → (𝑔 ↾ 𝑥):𝑥–1-1-onto→𝑋) |
21 | | nnfoctbdj.dj |
. . . . . . . . . 10
⊢ (𝜑 → Disj 𝑦 ∈ 𝑋 𝑦) |
22 | 21 | adantr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔:ℕ–onto→𝑋) → Disj 𝑦 ∈ 𝑋 𝑦) |
23 | 22 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑔:ℕ–onto→𝑋) ∧ 𝑥 ∈ 𝒫 ℕ ∧ (𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔) → Disj 𝑦 ∈ 𝑋 𝑦) |
24 | | eqeq1 2763 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → (𝑚 = 1 ↔ 𝑛 = 1)) |
25 | | oveq1 7150 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑛 → (𝑚 − 1) = (𝑛 − 1)) |
26 | 25 | eleq1d 2835 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → ((𝑚 − 1) ∈ 𝑥 ↔ (𝑛 − 1) ∈ 𝑥)) |
27 | 26 | notbid 322 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → (¬ (𝑚 − 1) ∈ 𝑥 ↔ ¬ (𝑛 − 1) ∈ 𝑥)) |
28 | 24, 27 | orbi12d 917 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → ((𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝑥) ↔ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝑥))) |
29 | | fvoveq1 7166 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → ((𝑔 ↾ 𝑥)‘(𝑚 − 1)) = ((𝑔 ↾ 𝑥)‘(𝑛 − 1))) |
30 | 28, 29 | ifbieq2d 4439 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → if((𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝑥), ∅, ((𝑔 ↾ 𝑥)‘(𝑚 − 1))) = if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝑥), ∅, ((𝑔 ↾ 𝑥)‘(𝑛 − 1)))) |
31 | 30 | cbvmptv 5128 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ ↦
if((𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝑥), ∅, ((𝑔 ↾ 𝑥)‘(𝑚 − 1)))) = (𝑛 ∈ ℕ ↦ if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝑥), ∅, ((𝑔 ↾ 𝑥)‘(𝑛 − 1)))) |
32 | 13, 20, 23, 31 | nnfoctbdjlem 43445 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔:ℕ–onto→𝑋) ∧ 𝑥 ∈ 𝒫 ℕ ∧ (𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔) → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓‘𝑛))) |
33 | 32 | 3exp 1117 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔:ℕ–onto→𝑋) → (𝑥 ∈ 𝒫 ℕ → ((𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓‘𝑛))))) |
34 | 33 | rexlimdv 3205 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔:ℕ–onto→𝑋) → (∃𝑥 ∈ 𝒫 ℕ(𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓‘𝑛)))) |
35 | 11, 34 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ 𝑔:ℕ–onto→𝑋) → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓‘𝑛))) |
36 | 35 | ex 417 |
. . 3
⊢ (𝜑 → (𝑔:ℕ–onto→𝑋 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓‘𝑛)))) |
37 | 36 | exlimdv 1935 |
. 2
⊢ (𝜑 → (∃𝑔 𝑔:ℕ–onto→𝑋 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓‘𝑛)))) |
38 | 4, 37 | mpd 15 |
1
⊢ (𝜑 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓‘𝑛))) |