Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnfoctbdj Structured version   Visualization version   GIF version

Theorem nnfoctbdj 46461
Description: There exists a mapping from onto any (nonempty) countable set of disjoint sets, such that elements in the range of the map are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
nnfoctbdj.ctb (𝜑𝑋 ≼ ω)
nnfoctbdj.n0 (𝜑𝑋 ≠ ∅)
nnfoctbdj.dj (𝜑Disj 𝑦𝑋 𝑦)
Assertion
Ref Expression
nnfoctbdj (𝜑 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)))
Distinct variable groups:   𝑓,𝑋,𝑛   𝑦,𝑋,𝑛   𝜑,𝑛,𝑦
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem nnfoctbdj
Dummy variables 𝑔 𝑥 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnfoctbdj.ctb . . 3 (𝜑𝑋 ≼ ω)
2 nnfoctbdj.n0 . . 3 (𝜑𝑋 ≠ ∅)
3 nnfoctb 45049 . . 3 ((𝑋 ≼ ω ∧ 𝑋 ≠ ∅) → ∃𝑔 𝑔:ℕ–onto𝑋)
41, 2, 3syl2anc 584 . 2 (𝜑 → ∃𝑔 𝑔:ℕ–onto𝑋)
5 fofn 6777 . . . . . . 7 (𝑔:ℕ–onto𝑋𝑔 Fn ℕ)
65adantl 481 . . . . . 6 ((𝜑𝑔:ℕ–onto𝑋) → 𝑔 Fn ℕ)
7 nnex 12199 . . . . . . 7 ℕ ∈ V
87a1i 11 . . . . . 6 ((𝜑𝑔:ℕ–onto𝑋) → ℕ ∈ V)
9 ltwenn 13934 . . . . . . 7 < We ℕ
109a1i 11 . . . . . 6 ((𝜑𝑔:ℕ–onto𝑋) → < We ℕ)
116, 8, 10wessf1orn 45187 . . . . 5 ((𝜑𝑔:ℕ–onto𝑋) → ∃𝑥 ∈ 𝒫 ℕ(𝑔𝑥):𝑥1-1-onto→ran 𝑔)
12 elpwi 4573 . . . . . . . . 9 (𝑥 ∈ 𝒫 ℕ → 𝑥 ⊆ ℕ)
13123ad2ant2 1134 . . . . . . . 8 (((𝜑𝑔:ℕ–onto𝑋) ∧ 𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → 𝑥 ⊆ ℕ)
14 simpr 484 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝑋 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):𝑥1-1-onto→ran 𝑔)
15 forn 6778 . . . . . . . . . . . . 13 (𝑔:ℕ–onto𝑋 → ran 𝑔 = 𝑋)
1615adantr 480 . . . . . . . . . . . 12 ((𝑔:ℕ–onto𝑋 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → ran 𝑔 = 𝑋)
1716f1oeq3d 6800 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝑋 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → ((𝑔𝑥):𝑥1-1-onto→ran 𝑔 ↔ (𝑔𝑥):𝑥1-1-onto𝑋))
1814, 17mpbid 232 . . . . . . . . . 10 ((𝑔:ℕ–onto𝑋 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):𝑥1-1-onto𝑋)
1918adantll 714 . . . . . . . . 9 (((𝜑𝑔:ℕ–onto𝑋) ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):𝑥1-1-onto𝑋)
20193adant2 1131 . . . . . . . 8 (((𝜑𝑔:ℕ–onto𝑋) ∧ 𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):𝑥1-1-onto𝑋)
21 nnfoctbdj.dj . . . . . . . . . 10 (𝜑Disj 𝑦𝑋 𝑦)
2221adantr 480 . . . . . . . . 9 ((𝜑𝑔:ℕ–onto𝑋) → Disj 𝑦𝑋 𝑦)
23223ad2ant1 1133 . . . . . . . 8 (((𝜑𝑔:ℕ–onto𝑋) ∧ 𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → Disj 𝑦𝑋 𝑦)
24 eqeq1 2734 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑚 = 1 ↔ 𝑛 = 1))
25 oveq1 7397 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑚 − 1) = (𝑛 − 1))
2625eleq1d 2814 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑚 − 1) ∈ 𝑥 ↔ (𝑛 − 1) ∈ 𝑥))
2726notbid 318 . . . . . . . . . . 11 (𝑚 = 𝑛 → (¬ (𝑚 − 1) ∈ 𝑥 ↔ ¬ (𝑛 − 1) ∈ 𝑥))
2824, 27orbi12d 918 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝑥) ↔ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝑥)))
29 fvoveq1 7413 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝑔𝑥)‘(𝑚 − 1)) = ((𝑔𝑥)‘(𝑛 − 1)))
3028, 29ifbieq2d 4518 . . . . . . . . 9 (𝑚 = 𝑛 → if((𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝑥), ∅, ((𝑔𝑥)‘(𝑚 − 1))) = if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝑥), ∅, ((𝑔𝑥)‘(𝑛 − 1))))
3130cbvmptv 5214 . . . . . . . 8 (𝑚 ∈ ℕ ↦ if((𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝑥), ∅, ((𝑔𝑥)‘(𝑚 − 1)))) = (𝑛 ∈ ℕ ↦ if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝑥), ∅, ((𝑔𝑥)‘(𝑛 − 1))))
3213, 20, 23, 31nnfoctbdjlem 46460 . . . . . . 7 (((𝜑𝑔:ℕ–onto𝑋) ∧ 𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)))
33323exp 1119 . . . . . 6 ((𝜑𝑔:ℕ–onto𝑋) → (𝑥 ∈ 𝒫 ℕ → ((𝑔𝑥):𝑥1-1-onto→ran 𝑔 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)))))
3433rexlimdv 3133 . . . . 5 ((𝜑𝑔:ℕ–onto𝑋) → (∃𝑥 ∈ 𝒫 ℕ(𝑔𝑥):𝑥1-1-onto→ran 𝑔 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛))))
3511, 34mpd 15 . . . 4 ((𝜑𝑔:ℕ–onto𝑋) → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)))
3635ex 412 . . 3 (𝜑 → (𝑔:ℕ–onto𝑋 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛))))
3736exlimdv 1933 . 2 (𝜑 → (∃𝑔 𝑔:ℕ–onto𝑋 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛))))
384, 37mpd 15 1 (𝜑 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  wrex 3054  Vcvv 3450  cun 3915  wss 3917  c0 4299  ifcif 4491  𝒫 cpw 4566  {csn 4592  Disj wdisj 5077   class class class wbr 5110  cmpt 5191   We wwe 5593  ran crn 5642  cres 5643   Fn wfn 6509  ontowfo 6512  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  ωcom 7845  cdom 8919  1c1 11076   < clt 11215  cmin 11412  cn 12193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959
This theorem is referenced by:  ismeannd  46472
  Copyright terms: Public domain W3C validator