Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnfoctbdj Structured version   Visualization version   GIF version

Theorem nnfoctbdj 42745
Description: There exists a mapping from onto any (nonempty) countable set of disjoint sets, such that elements in the range of the map are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
nnfoctbdj.ctb (𝜑𝑋 ≼ ω)
nnfoctbdj.n0 (𝜑𝑋 ≠ ∅)
nnfoctbdj.dj (𝜑Disj 𝑦𝑋 𝑦)
Assertion
Ref Expression
nnfoctbdj (𝜑 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)))
Distinct variable groups:   𝑓,𝑋,𝑛   𝑦,𝑋,𝑛   𝜑,𝑛,𝑦
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem nnfoctbdj
Dummy variables 𝑔 𝑥 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnfoctbdj.ctb . . 3 (𝜑𝑋 ≼ ω)
2 nnfoctbdj.n0 . . 3 (𝜑𝑋 ≠ ∅)
3 nnfoctb 41316 . . 3 ((𝑋 ≼ ω ∧ 𝑋 ≠ ∅) → ∃𝑔 𝑔:ℕ–onto𝑋)
41, 2, 3syl2anc 586 . 2 (𝜑 → ∃𝑔 𝑔:ℕ–onto𝑋)
5 fofn 6594 . . . . . . 7 (𝑔:ℕ–onto𝑋𝑔 Fn ℕ)
65adantl 484 . . . . . 6 ((𝜑𝑔:ℕ–onto𝑋) → 𝑔 Fn ℕ)
7 nnex 11646 . . . . . . 7 ℕ ∈ V
87a1i 11 . . . . . 6 ((𝜑𝑔:ℕ–onto𝑋) → ℕ ∈ V)
9 ltwenn 13333 . . . . . . 7 < We ℕ
109a1i 11 . . . . . 6 ((𝜑𝑔:ℕ–onto𝑋) → < We ℕ)
116, 8, 10wessf1orn 41453 . . . . 5 ((𝜑𝑔:ℕ–onto𝑋) → ∃𝑥 ∈ 𝒫 ℕ(𝑔𝑥):𝑥1-1-onto→ran 𝑔)
12 elpwi 4550 . . . . . . . . 9 (𝑥 ∈ 𝒫 ℕ → 𝑥 ⊆ ℕ)
13123ad2ant2 1130 . . . . . . . 8 (((𝜑𝑔:ℕ–onto𝑋) ∧ 𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → 𝑥 ⊆ ℕ)
14 simpr 487 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝑋 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):𝑥1-1-onto→ran 𝑔)
15 forn 6595 . . . . . . . . . . . . 13 (𝑔:ℕ–onto𝑋 → ran 𝑔 = 𝑋)
1615adantr 483 . . . . . . . . . . . 12 ((𝑔:ℕ–onto𝑋 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → ran 𝑔 = 𝑋)
1716f1oeq3d 6614 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝑋 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → ((𝑔𝑥):𝑥1-1-onto→ran 𝑔 ↔ (𝑔𝑥):𝑥1-1-onto𝑋))
1814, 17mpbid 234 . . . . . . . . . 10 ((𝑔:ℕ–onto𝑋 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):𝑥1-1-onto𝑋)
1918adantll 712 . . . . . . . . 9 (((𝜑𝑔:ℕ–onto𝑋) ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):𝑥1-1-onto𝑋)
20193adant2 1127 . . . . . . . 8 (((𝜑𝑔:ℕ–onto𝑋) ∧ 𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):𝑥1-1-onto𝑋)
21 nnfoctbdj.dj . . . . . . . . . 10 (𝜑Disj 𝑦𝑋 𝑦)
2221adantr 483 . . . . . . . . 9 ((𝜑𝑔:ℕ–onto𝑋) → Disj 𝑦𝑋 𝑦)
23223ad2ant1 1129 . . . . . . . 8 (((𝜑𝑔:ℕ–onto𝑋) ∧ 𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → Disj 𝑦𝑋 𝑦)
24 eqeq1 2827 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑚 = 1 ↔ 𝑛 = 1))
25 oveq1 7165 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑚 − 1) = (𝑛 − 1))
2625eleq1d 2899 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑚 − 1) ∈ 𝑥 ↔ (𝑛 − 1) ∈ 𝑥))
2726notbid 320 . . . . . . . . . . 11 (𝑚 = 𝑛 → (¬ (𝑚 − 1) ∈ 𝑥 ↔ ¬ (𝑛 − 1) ∈ 𝑥))
2824, 27orbi12d 915 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝑥) ↔ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝑥)))
29 fvoveq1 7181 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝑔𝑥)‘(𝑚 − 1)) = ((𝑔𝑥)‘(𝑛 − 1)))
3028, 29ifbieq2d 4494 . . . . . . . . 9 (𝑚 = 𝑛 → if((𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝑥), ∅, ((𝑔𝑥)‘(𝑚 − 1))) = if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝑥), ∅, ((𝑔𝑥)‘(𝑛 − 1))))
3130cbvmptv 5171 . . . . . . . 8 (𝑚 ∈ ℕ ↦ if((𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝑥), ∅, ((𝑔𝑥)‘(𝑚 − 1)))) = (𝑛 ∈ ℕ ↦ if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝑥), ∅, ((𝑔𝑥)‘(𝑛 − 1))))
3213, 20, 23, 31nnfoctbdjlem 42744 . . . . . . 7 (((𝜑𝑔:ℕ–onto𝑋) ∧ 𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)))
33323exp 1115 . . . . . 6 ((𝜑𝑔:ℕ–onto𝑋) → (𝑥 ∈ 𝒫 ℕ → ((𝑔𝑥):𝑥1-1-onto→ran 𝑔 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)))))
3433rexlimdv 3285 . . . . 5 ((𝜑𝑔:ℕ–onto𝑋) → (∃𝑥 ∈ 𝒫 ℕ(𝑔𝑥):𝑥1-1-onto→ran 𝑔 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛))))
3511, 34mpd 15 . . . 4 ((𝜑𝑔:ℕ–onto𝑋) → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)))
3635ex 415 . . 3 (𝜑 → (𝑔:ℕ–onto𝑋 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛))))
3736exlimdv 1934 . 2 (𝜑 → (∃𝑔 𝑔:ℕ–onto𝑋 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛))))
384, 37mpd 15 1 (𝜑 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wne 3018  wrex 3141  Vcvv 3496  cun 3936  wss 3938  c0 4293  ifcif 4469  𝒫 cpw 4541  {csn 4569  Disj wdisj 5033   class class class wbr 5068  cmpt 5148   We wwe 5515  ran crn 5558  cres 5559   Fn wfn 6352  ontowfo 6355  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  ωcom 7582  cdom 8509  1c1 10540   < clt 10677  cmin 10872  cn 11640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-disj 5034  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393
This theorem is referenced by:  ismeannd  42756
  Copyright terms: Public domain W3C validator