Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0resrn Structured version   Visualization version   GIF version

Theorem sge0resrn 42563
Description: The sum of nonnegative extended reals restricted to the range of a function is less than or equal to the sum of the composition of the two functions (well-order hypothesis allows to avoid using the axiom of choice). (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0resrn.a (𝜑𝐴𝑉)
sge0resrn.f (𝜑𝐹:𝐵⟶(0[,]+∞))
sge0resrn.g (𝜑𝐺:𝐴𝐵)
sge0resrn.r (𝜑𝑅 We 𝐴)
Assertion
Ref Expression
sge0resrn (𝜑 → (Σ^‘(𝐹 ↾ ran 𝐺)) ≤ (Σ^‘(𝐹𝐺)))

Proof of Theorem sge0resrn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sge0resrn.g . . . 4 (𝜑𝐺:𝐴𝐵)
21ffnd 6508 . . 3 (𝜑𝐺 Fn 𝐴)
3 sge0resrn.a . . 3 (𝜑𝐴𝑉)
4 sge0resrn.r . . 3 (𝜑𝑅 We 𝐴)
52, 3, 4wessf1orn 41322 . 2 (𝜑 → ∃𝑥 ∈ 𝒫 𝐴(𝐺𝑥):𝑥1-1-onto→ran 𝐺)
633ad2ant1 1125 . . . . 5 ((𝜑𝑥 ∈ 𝒫 𝐴 ∧ (𝐺𝑥):𝑥1-1-onto→ran 𝐺) → 𝐴𝑉)
7 sge0resrn.f . . . . . 6 (𝜑𝐹:𝐵⟶(0[,]+∞))
873ad2ant1 1125 . . . . 5 ((𝜑𝑥 ∈ 𝒫 𝐴 ∧ (𝐺𝑥):𝑥1-1-onto→ran 𝐺) → 𝐹:𝐵⟶(0[,]+∞))
913ad2ant1 1125 . . . . 5 ((𝜑𝑥 ∈ 𝒫 𝐴 ∧ (𝐺𝑥):𝑥1-1-onto→ran 𝐺) → 𝐺:𝐴𝐵)
10 simp2 1129 . . . . 5 ((𝜑𝑥 ∈ 𝒫 𝐴 ∧ (𝐺𝑥):𝑥1-1-onto→ran 𝐺) → 𝑥 ∈ 𝒫 𝐴)
11 simp3 1130 . . . . 5 ((𝜑𝑥 ∈ 𝒫 𝐴 ∧ (𝐺𝑥):𝑥1-1-onto→ran 𝐺) → (𝐺𝑥):𝑥1-1-onto→ran 𝐺)
126, 8, 9, 10, 11sge0resrnlem 42562 . . . 4 ((𝜑𝑥 ∈ 𝒫 𝐴 ∧ (𝐺𝑥):𝑥1-1-onto→ran 𝐺) → (Σ^‘(𝐹 ↾ ran 𝐺)) ≤ (Σ^‘(𝐹𝐺)))
13123exp 1111 . . 3 (𝜑 → (𝑥 ∈ 𝒫 𝐴 → ((𝐺𝑥):𝑥1-1-onto→ran 𝐺 → (Σ^‘(𝐹 ↾ ran 𝐺)) ≤ (Σ^‘(𝐹𝐺)))))
1413rexlimdv 3280 . 2 (𝜑 → (∃𝑥 ∈ 𝒫 𝐴(𝐺𝑥):𝑥1-1-onto→ran 𝐺 → (Σ^‘(𝐹 ↾ ran 𝐺)) ≤ (Σ^‘(𝐹𝐺))))
155, 14mpd 15 1 (𝜑 → (Σ^‘(𝐹 ↾ ran 𝐺)) ≤ (Σ^‘(𝐹𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1079  wcel 2105  wrex 3136  𝒫 cpw 4535   class class class wbr 5057   We wwe 5506  ran crn 5549  cres 5550  ccom 5552  wf 6344  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7145  0cc0 10525  +∞cpnf 10660  cle 10664  [,]cicc 12729  Σ^csumge0 42521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-sum 15031  df-sumge0 42522
This theorem is referenced by:  omeiunle  42676
  Copyright terms: Public domain W3C validator