Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssnnf1octb Structured version   Visualization version   GIF version

Theorem ssnnf1octb 41822
Description: There exists a bijection between a subset of and a given nonempty countable set. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Assertion
Ref Expression
ssnnf1octb ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴))
Distinct variable group:   𝐴,𝑓

Proof of Theorem ssnnf1octb
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnfoctb 41681 . 2 ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ∃𝑔 𝑔:ℕ–onto𝐴)
2 fofn 6567 . . . . . 6 (𝑔:ℕ–onto𝐴𝑔 Fn ℕ)
3 nnex 11631 . . . . . . 7 ℕ ∈ V
43a1i 11 . . . . . 6 (𝑔:ℕ–onto𝐴 → ℕ ∈ V)
5 ltwenn 13325 . . . . . . 7 < We ℕ
65a1i 11 . . . . . 6 (𝑔:ℕ–onto𝐴 → < We ℕ)
72, 4, 6wessf1orn 41812 . . . . 5 (𝑔:ℕ–onto𝐴 → ∃𝑥 ∈ 𝒫 ℕ(𝑔𝑥):𝑥1-1-onto→ran 𝑔)
8 f1odm 6594 . . . . . . . . . . 11 ((𝑔𝑥):𝑥1-1-onto→ran 𝑔 → dom (𝑔𝑥) = 𝑥)
98adantl 485 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → dom (𝑔𝑥) = 𝑥)
10 elpwi 4506 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 ℕ → 𝑥 ⊆ ℕ)
1110adantr 484 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → 𝑥 ⊆ ℕ)
129, 11eqsstrd 3953 . . . . . . . . 9 ((𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → dom (𝑔𝑥) ⊆ ℕ)
13123adant1 1127 . . . . . . . 8 ((𝑔:ℕ–onto𝐴𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → dom (𝑔𝑥) ⊆ ℕ)
14 simpr 488 . . . . . . . . . 10 ((𝑔:ℕ–onto𝐴 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):𝑥1-1-onto→ran 𝑔)
15 eqidd 2799 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝐴 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥) = (𝑔𝑥))
168eqcomd 2804 . . . . . . . . . . . 12 ((𝑔𝑥):𝑥1-1-onto→ran 𝑔𝑥 = dom (𝑔𝑥))
1716adantl 485 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝐴 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → 𝑥 = dom (𝑔𝑥))
18 forn 6568 . . . . . . . . . . . 12 (𝑔:ℕ–onto𝐴 → ran 𝑔 = 𝐴)
1918adantr 484 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝐴 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → ran 𝑔 = 𝐴)
2015, 17, 19f1oeq123d 6585 . . . . . . . . . 10 ((𝑔:ℕ–onto𝐴 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → ((𝑔𝑥):𝑥1-1-onto→ran 𝑔 ↔ (𝑔𝑥):dom (𝑔𝑥)–1-1-onto𝐴))
2114, 20mpbid 235 . . . . . . . . 9 ((𝑔:ℕ–onto𝐴 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):dom (𝑔𝑥)–1-1-onto𝐴)
22213adant2 1128 . . . . . . . 8 ((𝑔:ℕ–onto𝐴𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):dom (𝑔𝑥)–1-1-onto𝐴)
23 vex 3444 . . . . . . . . . 10 𝑔 ∈ V
2423resex 5866 . . . . . . . . 9 (𝑔𝑥) ∈ V
25 dmeq 5736 . . . . . . . . . . 11 (𝑓 = (𝑔𝑥) → dom 𝑓 = dom (𝑔𝑥))
2625sseq1d 3946 . . . . . . . . . 10 (𝑓 = (𝑔𝑥) → (dom 𝑓 ⊆ ℕ ↔ dom (𝑔𝑥) ⊆ ℕ))
27 id 22 . . . . . . . . . . 11 (𝑓 = (𝑔𝑥) → 𝑓 = (𝑔𝑥))
28 eqidd 2799 . . . . . . . . . . 11 (𝑓 = (𝑔𝑥) → 𝐴 = 𝐴)
2927, 25, 28f1oeq123d 6585 . . . . . . . . . 10 (𝑓 = (𝑔𝑥) → (𝑓:dom 𝑓1-1-onto𝐴 ↔ (𝑔𝑥):dom (𝑔𝑥)–1-1-onto𝐴))
3026, 29anbi12d 633 . . . . . . . . 9 (𝑓 = (𝑔𝑥) → ((dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴) ↔ (dom (𝑔𝑥) ⊆ ℕ ∧ (𝑔𝑥):dom (𝑔𝑥)–1-1-onto𝐴)))
3124, 30spcev 3555 . . . . . . . 8 ((dom (𝑔𝑥) ⊆ ℕ ∧ (𝑔𝑥):dom (𝑔𝑥)–1-1-onto𝐴) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴))
3213, 22, 31syl2anc 587 . . . . . . 7 ((𝑔:ℕ–onto𝐴𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴))
33323exp 1116 . . . . . 6 (𝑔:ℕ–onto𝐴 → (𝑥 ∈ 𝒫 ℕ → ((𝑔𝑥):𝑥1-1-onto→ran 𝑔 → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴))))
3433rexlimdv 3242 . . . . 5 (𝑔:ℕ–onto𝐴 → (∃𝑥 ∈ 𝒫 ℕ(𝑔𝑥):𝑥1-1-onto→ran 𝑔 → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴)))
357, 34mpd 15 . . . 4 (𝑔:ℕ–onto𝐴 → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴))
3635a1i 11 . . 3 ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → (𝑔:ℕ–onto𝐴 → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴)))
3736exlimdv 1934 . 2 ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → (∃𝑔 𝑔:ℕ–onto𝐴 → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴)))
381, 37mpd 15 1 ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wne 2987  wrex 3107  Vcvv 3441  wss 3881  c0 4243  𝒫 cpw 4497   class class class wbr 5030   We wwe 5477  dom cdm 5519  ran crn 5520  cres 5521  ontowfo 6322  1-1-ontowf1o 6323  ωcom 7560  cdom 8490   < clt 10664  cn 11625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232
This theorem is referenced by:  isomennd  43170
  Copyright terms: Public domain W3C validator