Step | Hyp | Ref
| Expression |
1 | | nnfoctb 42484 |
. 2
⊢ ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) →
∃𝑔 𝑔:ℕ–onto→𝐴) |
2 | | fofn 6674 |
. . . . . 6
⊢ (𝑔:ℕ–onto→𝐴 → 𝑔 Fn ℕ) |
3 | | nnex 11909 |
. . . . . . 7
⊢ ℕ
∈ V |
4 | 3 | a1i 11 |
. . . . . 6
⊢ (𝑔:ℕ–onto→𝐴 → ℕ ∈ V) |
5 | | ltwenn 13610 |
. . . . . . 7
⊢ < We
ℕ |
6 | 5 | a1i 11 |
. . . . . 6
⊢ (𝑔:ℕ–onto→𝐴 → < We ℕ) |
7 | 2, 4, 6 | wessf1orn 42612 |
. . . . 5
⊢ (𝑔:ℕ–onto→𝐴 → ∃𝑥 ∈ 𝒫 ℕ(𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔) |
8 | | f1odm 6704 |
. . . . . . . . . . 11
⊢ ((𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔 → dom (𝑔 ↾ 𝑥) = 𝑥) |
9 | 8 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝒫 ℕ ∧
(𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔) → dom (𝑔 ↾ 𝑥) = 𝑥) |
10 | | elpwi 4539 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝒫 ℕ →
𝑥 ⊆
ℕ) |
11 | 10 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝒫 ℕ ∧
(𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔) → 𝑥 ⊆
ℕ) |
12 | 9, 11 | eqsstrd 3955 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝒫 ℕ ∧
(𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔) → dom (𝑔 ↾ 𝑥) ⊆ ℕ) |
13 | 12 | 3adant1 1128 |
. . . . . . . 8
⊢ ((𝑔:ℕ–onto→𝐴 ∧ 𝑥 ∈ 𝒫 ℕ ∧ (𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔) → dom (𝑔 ↾ 𝑥) ⊆ ℕ) |
14 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑔:ℕ–onto→𝐴 ∧ (𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔) → (𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔) |
15 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ ((𝑔:ℕ–onto→𝐴 ∧ (𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔) → (𝑔 ↾ 𝑥) = (𝑔 ↾ 𝑥)) |
16 | 8 | eqcomd 2744 |
. . . . . . . . . . . 12
⊢ ((𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔 → 𝑥 = dom (𝑔 ↾ 𝑥)) |
17 | 16 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑔:ℕ–onto→𝐴 ∧ (𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔) → 𝑥 = dom (𝑔 ↾ 𝑥)) |
18 | | forn 6675 |
. . . . . . . . . . . 12
⊢ (𝑔:ℕ–onto→𝐴 → ran 𝑔 = 𝐴) |
19 | 18 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑔:ℕ–onto→𝐴 ∧ (𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔) → ran 𝑔 = 𝐴) |
20 | 15, 17, 19 | f1oeq123d 6694 |
. . . . . . . . . 10
⊢ ((𝑔:ℕ–onto→𝐴 ∧ (𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔) → ((𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔 ↔ (𝑔 ↾ 𝑥):dom (𝑔 ↾ 𝑥)–1-1-onto→𝐴)) |
21 | 14, 20 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝑔:ℕ–onto→𝐴 ∧ (𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔) → (𝑔 ↾ 𝑥):dom (𝑔 ↾ 𝑥)–1-1-onto→𝐴) |
22 | 21 | 3adant2 1129 |
. . . . . . . 8
⊢ ((𝑔:ℕ–onto→𝐴 ∧ 𝑥 ∈ 𝒫 ℕ ∧ (𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔) → (𝑔 ↾ 𝑥):dom (𝑔 ↾ 𝑥)–1-1-onto→𝐴) |
23 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑔 ∈ V |
24 | 23 | resex 5928 |
. . . . . . . . 9
⊢ (𝑔 ↾ 𝑥) ∈ V |
25 | | dmeq 5801 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑔 ↾ 𝑥) → dom 𝑓 = dom (𝑔 ↾ 𝑥)) |
26 | 25 | sseq1d 3948 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑔 ↾ 𝑥) → (dom 𝑓 ⊆ ℕ ↔ dom (𝑔 ↾ 𝑥) ⊆ ℕ)) |
27 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑔 ↾ 𝑥) → 𝑓 = (𝑔 ↾ 𝑥)) |
28 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑔 ↾ 𝑥) → 𝐴 = 𝐴) |
29 | 27, 25, 28 | f1oeq123d 6694 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑔 ↾ 𝑥) → (𝑓:dom 𝑓–1-1-onto→𝐴 ↔ (𝑔 ↾ 𝑥):dom (𝑔 ↾ 𝑥)–1-1-onto→𝐴)) |
30 | 26, 29 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑓 = (𝑔 ↾ 𝑥) → ((dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓–1-1-onto→𝐴) ↔ (dom (𝑔 ↾ 𝑥) ⊆ ℕ ∧ (𝑔 ↾ 𝑥):dom (𝑔 ↾ 𝑥)–1-1-onto→𝐴))) |
31 | 24, 30 | spcev 3535 |
. . . . . . . 8
⊢ ((dom
(𝑔 ↾ 𝑥) ⊆ ℕ ∧ (𝑔 ↾ 𝑥):dom (𝑔 ↾ 𝑥)–1-1-onto→𝐴) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓–1-1-onto→𝐴)) |
32 | 13, 22, 31 | syl2anc 583 |
. . . . . . 7
⊢ ((𝑔:ℕ–onto→𝐴 ∧ 𝑥 ∈ 𝒫 ℕ ∧ (𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓–1-1-onto→𝐴)) |
33 | 32 | 3exp 1117 |
. . . . . 6
⊢ (𝑔:ℕ–onto→𝐴 → (𝑥 ∈ 𝒫 ℕ → ((𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔 → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓–1-1-onto→𝐴)))) |
34 | 33 | rexlimdv 3211 |
. . . . 5
⊢ (𝑔:ℕ–onto→𝐴 → (∃𝑥 ∈ 𝒫 ℕ(𝑔 ↾ 𝑥):𝑥–1-1-onto→ran
𝑔 → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓–1-1-onto→𝐴))) |
35 | 7, 34 | mpd 15 |
. . . 4
⊢ (𝑔:ℕ–onto→𝐴 → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓–1-1-onto→𝐴)) |
36 | 35 | a1i 11 |
. . 3
⊢ ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → (𝑔:ℕ–onto→𝐴 → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓–1-1-onto→𝐴))) |
37 | 36 | exlimdv 1937 |
. 2
⊢ ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) →
(∃𝑔 𝑔:ℕ–onto→𝐴 → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓–1-1-onto→𝐴))) |
38 | 1, 37 | mpd 15 |
1
⊢ ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) →
∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓–1-1-onto→𝐴)) |