Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssnnf1octb Structured version   Visualization version   GIF version

Theorem ssnnf1octb 45316
Description: There exists a bijection between a subset of and a given nonempty countable set. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Assertion
Ref Expression
ssnnf1octb ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴))
Distinct variable group:   𝐴,𝑓

Proof of Theorem ssnnf1octb
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnfoctb 45170 . 2 ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ∃𝑔 𝑔:ℕ–onto𝐴)
2 fofn 6742 . . . . . 6 (𝑔:ℕ–onto𝐴𝑔 Fn ℕ)
3 nnex 12138 . . . . . . 7 ℕ ∈ V
43a1i 11 . . . . . 6 (𝑔:ℕ–onto𝐴 → ℕ ∈ V)
5 ltwenn 13871 . . . . . . 7 < We ℕ
65a1i 11 . . . . . 6 (𝑔:ℕ–onto𝐴 → < We ℕ)
72, 4, 6wessf1orn 45308 . . . . 5 (𝑔:ℕ–onto𝐴 → ∃𝑥 ∈ 𝒫 ℕ(𝑔𝑥):𝑥1-1-onto→ran 𝑔)
8 f1odm 6772 . . . . . . . . . . 11 ((𝑔𝑥):𝑥1-1-onto→ran 𝑔 → dom (𝑔𝑥) = 𝑥)
98adantl 481 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → dom (𝑔𝑥) = 𝑥)
10 elpwi 4556 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 ℕ → 𝑥 ⊆ ℕ)
1110adantr 480 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → 𝑥 ⊆ ℕ)
129, 11eqsstrd 3965 . . . . . . . . 9 ((𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → dom (𝑔𝑥) ⊆ ℕ)
13123adant1 1130 . . . . . . . 8 ((𝑔:ℕ–onto𝐴𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → dom (𝑔𝑥) ⊆ ℕ)
14 simpr 484 . . . . . . . . . 10 ((𝑔:ℕ–onto𝐴 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):𝑥1-1-onto→ran 𝑔)
15 eqidd 2734 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝐴 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥) = (𝑔𝑥))
168eqcomd 2739 . . . . . . . . . . . 12 ((𝑔𝑥):𝑥1-1-onto→ran 𝑔𝑥 = dom (𝑔𝑥))
1716adantl 481 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝐴 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → 𝑥 = dom (𝑔𝑥))
18 forn 6743 . . . . . . . . . . . 12 (𝑔:ℕ–onto𝐴 → ran 𝑔 = 𝐴)
1918adantr 480 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝐴 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → ran 𝑔 = 𝐴)
2015, 17, 19f1oeq123d 6762 . . . . . . . . . 10 ((𝑔:ℕ–onto𝐴 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → ((𝑔𝑥):𝑥1-1-onto→ran 𝑔 ↔ (𝑔𝑥):dom (𝑔𝑥)–1-1-onto𝐴))
2114, 20mpbid 232 . . . . . . . . 9 ((𝑔:ℕ–onto𝐴 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):dom (𝑔𝑥)–1-1-onto𝐴)
22213adant2 1131 . . . . . . . 8 ((𝑔:ℕ–onto𝐴𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):dom (𝑔𝑥)–1-1-onto𝐴)
23 vex 3441 . . . . . . . . . 10 𝑔 ∈ V
2423resex 5982 . . . . . . . . 9 (𝑔𝑥) ∈ V
25 dmeq 5847 . . . . . . . . . . 11 (𝑓 = (𝑔𝑥) → dom 𝑓 = dom (𝑔𝑥))
2625sseq1d 3962 . . . . . . . . . 10 (𝑓 = (𝑔𝑥) → (dom 𝑓 ⊆ ℕ ↔ dom (𝑔𝑥) ⊆ ℕ))
27 id 22 . . . . . . . . . . 11 (𝑓 = (𝑔𝑥) → 𝑓 = (𝑔𝑥))
28 eqidd 2734 . . . . . . . . . . 11 (𝑓 = (𝑔𝑥) → 𝐴 = 𝐴)
2927, 25, 28f1oeq123d 6762 . . . . . . . . . 10 (𝑓 = (𝑔𝑥) → (𝑓:dom 𝑓1-1-onto𝐴 ↔ (𝑔𝑥):dom (𝑔𝑥)–1-1-onto𝐴))
3026, 29anbi12d 632 . . . . . . . . 9 (𝑓 = (𝑔𝑥) → ((dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴) ↔ (dom (𝑔𝑥) ⊆ ℕ ∧ (𝑔𝑥):dom (𝑔𝑥)–1-1-onto𝐴)))
3124, 30spcev 3557 . . . . . . . 8 ((dom (𝑔𝑥) ⊆ ℕ ∧ (𝑔𝑥):dom (𝑔𝑥)–1-1-onto𝐴) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴))
3213, 22, 31syl2anc 584 . . . . . . 7 ((𝑔:ℕ–onto𝐴𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴))
33323exp 1119 . . . . . 6 (𝑔:ℕ–onto𝐴 → (𝑥 ∈ 𝒫 ℕ → ((𝑔𝑥):𝑥1-1-onto→ran 𝑔 → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴))))
3433rexlimdv 3132 . . . . 5 (𝑔:ℕ–onto𝐴 → (∃𝑥 ∈ 𝒫 ℕ(𝑔𝑥):𝑥1-1-onto→ran 𝑔 → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴)))
357, 34mpd 15 . . . 4 (𝑔:ℕ–onto𝐴 → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴))
3635a1i 11 . . 3 ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → (𝑔:ℕ–onto𝐴 → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴)))
3736exlimdv 1934 . 2 ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → (∃𝑔 𝑔:ℕ–onto𝐴 → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴)))
381, 37mpd 15 1 ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2113  wne 2929  wrex 3057  Vcvv 3437  wss 3898  c0 4282  𝒫 cpw 4549   class class class wbr 5093   We wwe 5571  dom cdm 5619  ran crn 5620  cres 5621  ontowfo 6484  1-1-ontowf1o 6485  ωcom 7802  cdom 8873   < clt 11153  cn 12132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739
This theorem is referenced by:  isomennd  46654
  Copyright terms: Public domain W3C validator