Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssnnf1octb Structured version   Visualization version   GIF version

Theorem ssnnf1octb 45237
Description: There exists a bijection between a subset of and a given nonempty countable set. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Assertion
Ref Expression
ssnnf1octb ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴))
Distinct variable group:   𝐴,𝑓

Proof of Theorem ssnnf1octb
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnfoctb 45091 . 2 ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ∃𝑔 𝑔:ℕ–onto𝐴)
2 fofn 6737 . . . . . 6 (𝑔:ℕ–onto𝐴𝑔 Fn ℕ)
3 nnex 12131 . . . . . . 7 ℕ ∈ V
43a1i 11 . . . . . 6 (𝑔:ℕ–onto𝐴 → ℕ ∈ V)
5 ltwenn 13869 . . . . . . 7 < We ℕ
65a1i 11 . . . . . 6 (𝑔:ℕ–onto𝐴 → < We ℕ)
72, 4, 6wessf1orn 45229 . . . . 5 (𝑔:ℕ–onto𝐴 → ∃𝑥 ∈ 𝒫 ℕ(𝑔𝑥):𝑥1-1-onto→ran 𝑔)
8 f1odm 6767 . . . . . . . . . . 11 ((𝑔𝑥):𝑥1-1-onto→ran 𝑔 → dom (𝑔𝑥) = 𝑥)
98adantl 481 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → dom (𝑔𝑥) = 𝑥)
10 elpwi 4557 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 ℕ → 𝑥 ⊆ ℕ)
1110adantr 480 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → 𝑥 ⊆ ℕ)
129, 11eqsstrd 3969 . . . . . . . . 9 ((𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → dom (𝑔𝑥) ⊆ ℕ)
13123adant1 1130 . . . . . . . 8 ((𝑔:ℕ–onto𝐴𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → dom (𝑔𝑥) ⊆ ℕ)
14 simpr 484 . . . . . . . . . 10 ((𝑔:ℕ–onto𝐴 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):𝑥1-1-onto→ran 𝑔)
15 eqidd 2732 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝐴 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥) = (𝑔𝑥))
168eqcomd 2737 . . . . . . . . . . . 12 ((𝑔𝑥):𝑥1-1-onto→ran 𝑔𝑥 = dom (𝑔𝑥))
1716adantl 481 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝐴 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → 𝑥 = dom (𝑔𝑥))
18 forn 6738 . . . . . . . . . . . 12 (𝑔:ℕ–onto𝐴 → ran 𝑔 = 𝐴)
1918adantr 480 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝐴 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → ran 𝑔 = 𝐴)
2015, 17, 19f1oeq123d 6757 . . . . . . . . . 10 ((𝑔:ℕ–onto𝐴 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → ((𝑔𝑥):𝑥1-1-onto→ran 𝑔 ↔ (𝑔𝑥):dom (𝑔𝑥)–1-1-onto𝐴))
2114, 20mpbid 232 . . . . . . . . 9 ((𝑔:ℕ–onto𝐴 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):dom (𝑔𝑥)–1-1-onto𝐴)
22213adant2 1131 . . . . . . . 8 ((𝑔:ℕ–onto𝐴𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):dom (𝑔𝑥)–1-1-onto𝐴)
23 vex 3440 . . . . . . . . . 10 𝑔 ∈ V
2423resex 5978 . . . . . . . . 9 (𝑔𝑥) ∈ V
25 dmeq 5843 . . . . . . . . . . 11 (𝑓 = (𝑔𝑥) → dom 𝑓 = dom (𝑔𝑥))
2625sseq1d 3966 . . . . . . . . . 10 (𝑓 = (𝑔𝑥) → (dom 𝑓 ⊆ ℕ ↔ dom (𝑔𝑥) ⊆ ℕ))
27 id 22 . . . . . . . . . . 11 (𝑓 = (𝑔𝑥) → 𝑓 = (𝑔𝑥))
28 eqidd 2732 . . . . . . . . . . 11 (𝑓 = (𝑔𝑥) → 𝐴 = 𝐴)
2927, 25, 28f1oeq123d 6757 . . . . . . . . . 10 (𝑓 = (𝑔𝑥) → (𝑓:dom 𝑓1-1-onto𝐴 ↔ (𝑔𝑥):dom (𝑔𝑥)–1-1-onto𝐴))
3026, 29anbi12d 632 . . . . . . . . 9 (𝑓 = (𝑔𝑥) → ((dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴) ↔ (dom (𝑔𝑥) ⊆ ℕ ∧ (𝑔𝑥):dom (𝑔𝑥)–1-1-onto𝐴)))
3124, 30spcev 3561 . . . . . . . 8 ((dom (𝑔𝑥) ⊆ ℕ ∧ (𝑔𝑥):dom (𝑔𝑥)–1-1-onto𝐴) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴))
3213, 22, 31syl2anc 584 . . . . . . 7 ((𝑔:ℕ–onto𝐴𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴))
33323exp 1119 . . . . . 6 (𝑔:ℕ–onto𝐴 → (𝑥 ∈ 𝒫 ℕ → ((𝑔𝑥):𝑥1-1-onto→ran 𝑔 → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴))))
3433rexlimdv 3131 . . . . 5 (𝑔:ℕ–onto𝐴 → (∃𝑥 ∈ 𝒫 ℕ(𝑔𝑥):𝑥1-1-onto→ran 𝑔 → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴)))
357, 34mpd 15 . . . 4 (𝑔:ℕ–onto𝐴 → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴))
3635a1i 11 . . 3 ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → (𝑔:ℕ–onto𝐴 → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴)))
3736exlimdv 1934 . 2 ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → (∃𝑔 𝑔:ℕ–onto𝐴 → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴)))
381, 37mpd 15 1 ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  wrex 3056  Vcvv 3436  wss 3902  c0 4283  𝒫 cpw 4550   class class class wbr 5091   We wwe 5568  dom cdm 5616  ran crn 5617  cres 5618  ontowfo 6479  1-1-ontowf1o 6480  ωcom 7796  cdom 8867   < clt 11146  cn 12125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733
This theorem is referenced by:  isomennd  46575
  Copyright terms: Public domain W3C validator