Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssnnf1octb Structured version   Visualization version   GIF version

Theorem ssnnf1octb 40123
Description: There exists a bijection between a subset of and a given nonempty countable set. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Assertion
Ref Expression
ssnnf1octb ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴))
Distinct variable group:   𝐴,𝑓

Proof of Theorem ssnnf1octb
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnfoctb 39959 . 2 ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ∃𝑔 𝑔:ℕ–onto𝐴)
2 fofn 6331 . . . . . 6 (𝑔:ℕ–onto𝐴𝑔 Fn ℕ)
3 nnex 11317 . . . . . . 7 ℕ ∈ V
43a1i 11 . . . . . 6 (𝑔:ℕ–onto𝐴 → ℕ ∈ V)
5 ltwenn 13012 . . . . . . 7 < We ℕ
65a1i 11 . . . . . 6 (𝑔:ℕ–onto𝐴 → < We ℕ)
72, 4, 6wessf1orn 40113 . . . . 5 (𝑔:ℕ–onto𝐴 → ∃𝑥 ∈ 𝒫 ℕ(𝑔𝑥):𝑥1-1-onto→ran 𝑔)
8 f1odm 6358 . . . . . . . . . . 11 ((𝑔𝑥):𝑥1-1-onto→ran 𝑔 → dom (𝑔𝑥) = 𝑥)
98adantl 474 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → dom (𝑔𝑥) = 𝑥)
10 elpwi 4357 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 ℕ → 𝑥 ⊆ ℕ)
1110adantr 473 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → 𝑥 ⊆ ℕ)
129, 11eqsstrd 3833 . . . . . . . . 9 ((𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → dom (𝑔𝑥) ⊆ ℕ)
13123adant1 1161 . . . . . . . 8 ((𝑔:ℕ–onto𝐴𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → dom (𝑔𝑥) ⊆ ℕ)
14 simpr 478 . . . . . . . . . 10 ((𝑔:ℕ–onto𝐴 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):𝑥1-1-onto→ran 𝑔)
15 eqidd 2798 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝐴 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥) = (𝑔𝑥))
168eqcomd 2803 . . . . . . . . . . . 12 ((𝑔𝑥):𝑥1-1-onto→ran 𝑔𝑥 = dom (𝑔𝑥))
1716adantl 474 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝐴 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → 𝑥 = dom (𝑔𝑥))
18 forn 6332 . . . . . . . . . . . 12 (𝑔:ℕ–onto𝐴 → ran 𝑔 = 𝐴)
1918adantr 473 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝐴 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → ran 𝑔 = 𝐴)
2015, 17, 19f1oeq123d 6349 . . . . . . . . . 10 ((𝑔:ℕ–onto𝐴 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → ((𝑔𝑥):𝑥1-1-onto→ran 𝑔 ↔ (𝑔𝑥):dom (𝑔𝑥)–1-1-onto𝐴))
2114, 20mpbid 224 . . . . . . . . 9 ((𝑔:ℕ–onto𝐴 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):dom (𝑔𝑥)–1-1-onto𝐴)
22213adant2 1162 . . . . . . . 8 ((𝑔:ℕ–onto𝐴𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):dom (𝑔𝑥)–1-1-onto𝐴)
23 vex 3386 . . . . . . . . . 10 𝑔 ∈ V
2423resex 5653 . . . . . . . . 9 (𝑔𝑥) ∈ V
25 dmeq 5525 . . . . . . . . . . 11 (𝑓 = (𝑔𝑥) → dom 𝑓 = dom (𝑔𝑥))
2625sseq1d 3826 . . . . . . . . . 10 (𝑓 = (𝑔𝑥) → (dom 𝑓 ⊆ ℕ ↔ dom (𝑔𝑥) ⊆ ℕ))
27 id 22 . . . . . . . . . . 11 (𝑓 = (𝑔𝑥) → 𝑓 = (𝑔𝑥))
28 eqidd 2798 . . . . . . . . . . 11 (𝑓 = (𝑔𝑥) → 𝐴 = 𝐴)
2927, 25, 28f1oeq123d 6349 . . . . . . . . . 10 (𝑓 = (𝑔𝑥) → (𝑓:dom 𝑓1-1-onto𝐴 ↔ (𝑔𝑥):dom (𝑔𝑥)–1-1-onto𝐴))
3026, 29anbi12d 625 . . . . . . . . 9 (𝑓 = (𝑔𝑥) → ((dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴) ↔ (dom (𝑔𝑥) ⊆ ℕ ∧ (𝑔𝑥):dom (𝑔𝑥)–1-1-onto𝐴)))
3124, 30spcev 3486 . . . . . . . 8 ((dom (𝑔𝑥) ⊆ ℕ ∧ (𝑔𝑥):dom (𝑔𝑥)–1-1-onto𝐴) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴))
3213, 22, 31syl2anc 580 . . . . . . 7 ((𝑔:ℕ–onto𝐴𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴))
33323exp 1149 . . . . . 6 (𝑔:ℕ–onto𝐴 → (𝑥 ∈ 𝒫 ℕ → ((𝑔𝑥):𝑥1-1-onto→ran 𝑔 → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴))))
3433rexlimdv 3209 . . . . 5 (𝑔:ℕ–onto𝐴 → (∃𝑥 ∈ 𝒫 ℕ(𝑔𝑥):𝑥1-1-onto→ran 𝑔 → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴)))
357, 34mpd 15 . . . 4 (𝑔:ℕ–onto𝐴 → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴))
3635a1i 11 . . 3 ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → (𝑔:ℕ–onto𝐴 → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴)))
3736exlimdv 2029 . 2 ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → (∃𝑔 𝑔:ℕ–onto𝐴 → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴)))
381, 37mpd 15 1 ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3a 1108   = wceq 1653  wex 1875  wcel 2157  wne 2969  wrex 3088  Vcvv 3383  wss 3767  c0 4113  𝒫 cpw 4347   class class class wbr 4841   We wwe 5268  dom cdm 5310  ran crn 5311  cres 5312  ontowfo 6097  1-1-ontowf1o 6098  ωcom 7297  cdom 8191   < clt 10361  cn 11310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2375  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-inf2 8786  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rmo 3095  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-isom 6108  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-n0 11577  df-z 11663  df-uz 11927
This theorem is referenced by:  isomennd  41478
  Copyright terms: Public domain W3C validator