|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > enrelmapr | Structured version Visualization version GIF version | ||
| Description: The set of all possible relations between two sets is equinumerous to the set of all mappings from one set to the powerset of the other. (Contributed by RP, 27-Apr-2021.) | 
| Ref | Expression | 
|---|---|
| enrelmapr | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐴 ↑m 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xpcomeng 9105 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)) | |
| 2 | pwen 9191 | . . 3 ⊢ ((𝐴 × 𝐵) ≈ (𝐵 × 𝐴) → 𝒫 (𝐴 × 𝐵) ≈ 𝒫 (𝐵 × 𝐴)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 × 𝐵) ≈ 𝒫 (𝐵 × 𝐴)) | 
| 4 | enrelmap 44015 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → 𝒫 (𝐵 × 𝐴) ≈ (𝒫 𝐴 ↑m 𝐵)) | |
| 5 | 4 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐵 × 𝐴) ≈ (𝒫 𝐴 ↑m 𝐵)) | 
| 6 | entr 9047 | . 2 ⊢ ((𝒫 (𝐴 × 𝐵) ≈ 𝒫 (𝐵 × 𝐴) ∧ 𝒫 (𝐵 × 𝐴) ≈ (𝒫 𝐴 ↑m 𝐵)) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐴 ↑m 𝐵)) | |
| 7 | 3, 5, 6 | syl2anc 584 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐴 ↑m 𝐵)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 𝒫 cpw 4599 class class class wbr 5142 × cxp 5682 (class class class)co 7432 ↑m cmap 8867 ≈ cen 8983 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-1o 8507 df-2o 8508 df-er 8746 df-map 8869 df-en 8987 | 
| This theorem is referenced by: enmappw 44017 | 
| Copyright terms: Public domain | W3C validator |