Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  enrelmap Structured version   Visualization version   GIF version

Theorem enrelmap 41494
Description: The set of all possible relations between two sets is equinumerous to the set of all mappings from one set to the powerset of the other. See rfovf1od 41503 for a demonstration of a natural one-to-one onto mapping. (Contributed by RP, 27-Apr-2021.)
Assertion
Ref Expression
enrelmap ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐵m 𝐴))

Proof of Theorem enrelmap
StepHypRef Expression
1 xpcomeng 8804 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴))
2 pwen 8886 . . . 4 ((𝐴 × 𝐵) ≈ (𝐵 × 𝐴) → 𝒫 (𝐴 × 𝐵) ≈ 𝒫 (𝐵 × 𝐴))
31, 2syl 17 . . 3 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴 × 𝐵) ≈ 𝒫 (𝐵 × 𝐴))
4 xpexg 7578 . . . . 5 ((𝐵𝑊𝐴𝑉) → (𝐵 × 𝐴) ∈ V)
54ancoms 458 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐵 × 𝐴) ∈ V)
6 pw2eng 8818 . . . 4 ((𝐵 × 𝐴) ∈ V → 𝒫 (𝐵 × 𝐴) ≈ (2om (𝐵 × 𝐴)))
75, 6syl 17 . . 3 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐵 × 𝐴) ≈ (2om (𝐵 × 𝐴)))
8 entr 8747 . . 3 ((𝒫 (𝐴 × 𝐵) ≈ 𝒫 (𝐵 × 𝐴) ∧ 𝒫 (𝐵 × 𝐴) ≈ (2om (𝐵 × 𝐴))) → 𝒫 (𝐴 × 𝐵) ≈ (2om (𝐵 × 𝐴)))
93, 7, 8syl2anc 583 . 2 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (2om (𝐵 × 𝐴)))
10 pw2eng 8818 . . . . 5 (𝐵𝑊 → 𝒫 𝐵 ≈ (2om 𝐵))
11 enrefg 8727 . . . . 5 (𝐴𝑉𝐴𝐴)
12 mapen 8877 . . . . 5 ((𝒫 𝐵 ≈ (2om 𝐵) ∧ 𝐴𝐴) → (𝒫 𝐵m 𝐴) ≈ ((2om 𝐵) ↑m 𝐴))
1310, 11, 12syl2anr 596 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝒫 𝐵m 𝐴) ≈ ((2om 𝐵) ↑m 𝐴))
14 2on 8275 . . . . 5 2o ∈ On
15 simpr 484 . . . . 5 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
16 simpl 482 . . . . 5 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
17 mapxpen 8879 . . . . 5 ((2o ∈ On ∧ 𝐵𝑊𝐴𝑉) → ((2om 𝐵) ↑m 𝐴) ≈ (2om (𝐵 × 𝐴)))
1814, 15, 16, 17mp3an2i 1464 . . . 4 ((𝐴𝑉𝐵𝑊) → ((2om 𝐵) ↑m 𝐴) ≈ (2om (𝐵 × 𝐴)))
19 entr 8747 . . . 4 (((𝒫 𝐵m 𝐴) ≈ ((2om 𝐵) ↑m 𝐴) ∧ ((2om 𝐵) ↑m 𝐴) ≈ (2om (𝐵 × 𝐴))) → (𝒫 𝐵m 𝐴) ≈ (2om (𝐵 × 𝐴)))
2013, 18, 19syl2anc 583 . . 3 ((𝐴𝑉𝐵𝑊) → (𝒫 𝐵m 𝐴) ≈ (2om (𝐵 × 𝐴)))
2120ensymd 8746 . 2 ((𝐴𝑉𝐵𝑊) → (2om (𝐵 × 𝐴)) ≈ (𝒫 𝐵m 𝐴))
22 entr 8747 . 2 ((𝒫 (𝐴 × 𝐵) ≈ (2om (𝐵 × 𝐴)) ∧ (2om (𝐵 × 𝐴)) ≈ (𝒫 𝐵m 𝐴)) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐵m 𝐴))
239, 21, 22syl2anc 583 1 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐵m 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3422  𝒫 cpw 4530   class class class wbr 5070   × cxp 5578  Oncon0 6251  (class class class)co 7255  2oc2o 8261  m cmap 8573  cen 8688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-en 8692
This theorem is referenced by:  enrelmapr  41495  enmappw  41496
  Copyright terms: Public domain W3C validator