| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > enrelmap | Structured version Visualization version GIF version | ||
| Description: The set of all possible relations between two sets is equinumerous to the set of all mappings from one set to the powerset of the other. See rfovf1od 43995 for a demonstration of a natural one-to-one onto mapping. (Contributed by RP, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| enrelmap | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐵 ↑m 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpcomeng 9033 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)) | |
| 2 | pwen 9114 | . . . 4 ⊢ ((𝐴 × 𝐵) ≈ (𝐵 × 𝐴) → 𝒫 (𝐴 × 𝐵) ≈ 𝒫 (𝐵 × 𝐴)) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 × 𝐵) ≈ 𝒫 (𝐵 × 𝐴)) |
| 4 | xpexg 7726 | . . . . 5 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐵 × 𝐴) ∈ V) | |
| 5 | 4 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 × 𝐴) ∈ V) |
| 6 | pw2eng 9047 | . . . 4 ⊢ ((𝐵 × 𝐴) ∈ V → 𝒫 (𝐵 × 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐵 × 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) |
| 8 | entr 8977 | . . 3 ⊢ ((𝒫 (𝐴 × 𝐵) ≈ 𝒫 (𝐵 × 𝐴) ∧ 𝒫 (𝐵 × 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) → 𝒫 (𝐴 × 𝐵) ≈ (2o ↑m (𝐵 × 𝐴))) | |
| 9 | 3, 7, 8 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (2o ↑m (𝐵 × 𝐴))) |
| 10 | pw2eng 9047 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → 𝒫 𝐵 ≈ (2o ↑m 𝐵)) | |
| 11 | enrefg 8955 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴) | |
| 12 | mapen 9105 | . . . . 5 ⊢ ((𝒫 𝐵 ≈ (2o ↑m 𝐵) ∧ 𝐴 ≈ 𝐴) → (𝒫 𝐵 ↑m 𝐴) ≈ ((2o ↑m 𝐵) ↑m 𝐴)) | |
| 13 | 10, 11, 12 | syl2anr 597 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝒫 𝐵 ↑m 𝐴) ≈ ((2o ↑m 𝐵) ↑m 𝐴)) |
| 14 | 2on 8447 | . . . . 5 ⊢ 2o ∈ On | |
| 15 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ 𝑊) | |
| 16 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
| 17 | mapxpen 9107 | . . . . 5 ⊢ ((2o ∈ On ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ((2o ↑m 𝐵) ↑m 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) | |
| 18 | 14, 15, 16, 17 | mp3an2i 1468 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((2o ↑m 𝐵) ↑m 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) |
| 19 | entr 8977 | . . . 4 ⊢ (((𝒫 𝐵 ↑m 𝐴) ≈ ((2o ↑m 𝐵) ↑m 𝐴) ∧ ((2o ↑m 𝐵) ↑m 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) → (𝒫 𝐵 ↑m 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) | |
| 20 | 13, 18, 19 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝒫 𝐵 ↑m 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) |
| 21 | 20 | ensymd 8976 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2o ↑m (𝐵 × 𝐴)) ≈ (𝒫 𝐵 ↑m 𝐴)) |
| 22 | entr 8977 | . 2 ⊢ ((𝒫 (𝐴 × 𝐵) ≈ (2o ↑m (𝐵 × 𝐴)) ∧ (2o ↑m (𝐵 × 𝐴)) ≈ (𝒫 𝐵 ↑m 𝐴)) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐵 ↑m 𝐴)) | |
| 23 | 9, 21, 22 | syl2anc 584 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐵 ↑m 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3447 𝒫 cpw 4563 class class class wbr 5107 × cxp 5636 Oncon0 6332 (class class class)co 7387 2oc2o 8428 ↑m cmap 8799 ≈ cen 8915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-en 8919 |
| This theorem is referenced by: enrelmapr 43987 enmappw 43988 |
| Copyright terms: Public domain | W3C validator |