![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > enrelmap | Structured version Visualization version GIF version |
Description: The set of all possible relations between two sets is equinumerous to the set of all mappings from one set to the powerset of the other. See rfovf1od 43501 for a demonstration of a natural one-to-one onto mapping. (Contributed by RP, 27-Apr-2021.) |
Ref | Expression |
---|---|
enrelmap | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐵 ↑m 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpcomeng 9087 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)) | |
2 | pwen 9173 | . . . 4 ⊢ ((𝐴 × 𝐵) ≈ (𝐵 × 𝐴) → 𝒫 (𝐴 × 𝐵) ≈ 𝒫 (𝐵 × 𝐴)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 × 𝐵) ≈ 𝒫 (𝐵 × 𝐴)) |
4 | xpexg 7750 | . . . . 5 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐵 × 𝐴) ∈ V) | |
5 | 4 | ancoms 457 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 × 𝐴) ∈ V) |
6 | pw2eng 9101 | . . . 4 ⊢ ((𝐵 × 𝐴) ∈ V → 𝒫 (𝐵 × 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐵 × 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) |
8 | entr 9025 | . . 3 ⊢ ((𝒫 (𝐴 × 𝐵) ≈ 𝒫 (𝐵 × 𝐴) ∧ 𝒫 (𝐵 × 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) → 𝒫 (𝐴 × 𝐵) ≈ (2o ↑m (𝐵 × 𝐴))) | |
9 | 3, 7, 8 | syl2anc 582 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (2o ↑m (𝐵 × 𝐴))) |
10 | pw2eng 9101 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → 𝒫 𝐵 ≈ (2o ↑m 𝐵)) | |
11 | enrefg 9003 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴) | |
12 | mapen 9164 | . . . . 5 ⊢ ((𝒫 𝐵 ≈ (2o ↑m 𝐵) ∧ 𝐴 ≈ 𝐴) → (𝒫 𝐵 ↑m 𝐴) ≈ ((2o ↑m 𝐵) ↑m 𝐴)) | |
13 | 10, 11, 12 | syl2anr 595 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝒫 𝐵 ↑m 𝐴) ≈ ((2o ↑m 𝐵) ↑m 𝐴)) |
14 | 2on 8499 | . . . . 5 ⊢ 2o ∈ On | |
15 | simpr 483 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ 𝑊) | |
16 | simpl 481 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
17 | mapxpen 9166 | . . . . 5 ⊢ ((2o ∈ On ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ((2o ↑m 𝐵) ↑m 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) | |
18 | 14, 15, 16, 17 | mp3an2i 1462 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((2o ↑m 𝐵) ↑m 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) |
19 | entr 9025 | . . . 4 ⊢ (((𝒫 𝐵 ↑m 𝐴) ≈ ((2o ↑m 𝐵) ↑m 𝐴) ∧ ((2o ↑m 𝐵) ↑m 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) → (𝒫 𝐵 ↑m 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) | |
20 | 13, 18, 19 | syl2anc 582 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝒫 𝐵 ↑m 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) |
21 | 20 | ensymd 9024 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2o ↑m (𝐵 × 𝐴)) ≈ (𝒫 𝐵 ↑m 𝐴)) |
22 | entr 9025 | . 2 ⊢ ((𝒫 (𝐴 × 𝐵) ≈ (2o ↑m (𝐵 × 𝐴)) ∧ (2o ↑m (𝐵 × 𝐴)) ≈ (𝒫 𝐵 ↑m 𝐴)) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐵 ↑m 𝐴)) | |
23 | 9, 21, 22 | syl2anc 582 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐵 ↑m 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 Vcvv 3463 𝒫 cpw 4598 class class class wbr 5143 × cxp 5670 Oncon0 6364 (class class class)co 7416 2oc2o 8479 ↑m cmap 8843 ≈ cen 8959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7991 df-2nd 7992 df-1o 8485 df-2o 8486 df-er 8723 df-map 8845 df-en 8963 |
This theorem is referenced by: enrelmapr 43493 enmappw 43494 |
Copyright terms: Public domain | W3C validator |