Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  enrelmap Structured version   Visualization version   GIF version

Theorem enrelmap 43987
Description: The set of all possible relations between two sets is equinumerous to the set of all mappings from one set to the powerset of the other. See rfovf1od 43996 for a demonstration of a natural one-to-one onto mapping. (Contributed by RP, 27-Apr-2021.)
Assertion
Ref Expression
enrelmap ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐵m 𝐴))

Proof of Theorem enrelmap
StepHypRef Expression
1 xpcomeng 9103 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴))
2 pwen 9189 . . . 4 ((𝐴 × 𝐵) ≈ (𝐵 × 𝐴) → 𝒫 (𝐴 × 𝐵) ≈ 𝒫 (𝐵 × 𝐴))
31, 2syl 17 . . 3 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴 × 𝐵) ≈ 𝒫 (𝐵 × 𝐴))
4 xpexg 7769 . . . . 5 ((𝐵𝑊𝐴𝑉) → (𝐵 × 𝐴) ∈ V)
54ancoms 458 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐵 × 𝐴) ∈ V)
6 pw2eng 9117 . . . 4 ((𝐵 × 𝐴) ∈ V → 𝒫 (𝐵 × 𝐴) ≈ (2om (𝐵 × 𝐴)))
75, 6syl 17 . . 3 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐵 × 𝐴) ≈ (2om (𝐵 × 𝐴)))
8 entr 9045 . . 3 ((𝒫 (𝐴 × 𝐵) ≈ 𝒫 (𝐵 × 𝐴) ∧ 𝒫 (𝐵 × 𝐴) ≈ (2om (𝐵 × 𝐴))) → 𝒫 (𝐴 × 𝐵) ≈ (2om (𝐵 × 𝐴)))
93, 7, 8syl2anc 584 . 2 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (2om (𝐵 × 𝐴)))
10 pw2eng 9117 . . . . 5 (𝐵𝑊 → 𝒫 𝐵 ≈ (2om 𝐵))
11 enrefg 9023 . . . . 5 (𝐴𝑉𝐴𝐴)
12 mapen 9180 . . . . 5 ((𝒫 𝐵 ≈ (2om 𝐵) ∧ 𝐴𝐴) → (𝒫 𝐵m 𝐴) ≈ ((2om 𝐵) ↑m 𝐴))
1310, 11, 12syl2anr 597 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝒫 𝐵m 𝐴) ≈ ((2om 𝐵) ↑m 𝐴))
14 2on 8519 . . . . 5 2o ∈ On
15 simpr 484 . . . . 5 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
16 simpl 482 . . . . 5 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
17 mapxpen 9182 . . . . 5 ((2o ∈ On ∧ 𝐵𝑊𝐴𝑉) → ((2om 𝐵) ↑m 𝐴) ≈ (2om (𝐵 × 𝐴)))
1814, 15, 16, 17mp3an2i 1465 . . . 4 ((𝐴𝑉𝐵𝑊) → ((2om 𝐵) ↑m 𝐴) ≈ (2om (𝐵 × 𝐴)))
19 entr 9045 . . . 4 (((𝒫 𝐵m 𝐴) ≈ ((2om 𝐵) ↑m 𝐴) ∧ ((2om 𝐵) ↑m 𝐴) ≈ (2om (𝐵 × 𝐴))) → (𝒫 𝐵m 𝐴) ≈ (2om (𝐵 × 𝐴)))
2013, 18, 19syl2anc 584 . . 3 ((𝐴𝑉𝐵𝑊) → (𝒫 𝐵m 𝐴) ≈ (2om (𝐵 × 𝐴)))
2120ensymd 9044 . 2 ((𝐴𝑉𝐵𝑊) → (2om (𝐵 × 𝐴)) ≈ (𝒫 𝐵m 𝐴))
22 entr 9045 . 2 ((𝒫 (𝐴 × 𝐵) ≈ (2om (𝐵 × 𝐴)) ∧ (2om (𝐵 × 𝐴)) ≈ (𝒫 𝐵m 𝐴)) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐵m 𝐴))
239, 21, 22syl2anc 584 1 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐵m 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106  Vcvv 3478  𝒫 cpw 4605   class class class wbr 5148   × cxp 5687  Oncon0 6386  (class class class)co 7431  2oc2o 8499  m cmap 8865  cen 8981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-en 8985
This theorem is referenced by:  enrelmapr  43988  enmappw  43989
  Copyright terms: Public domain W3C validator