Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  enrelmap Structured version   Visualization version   GIF version

Theorem enrelmap 43324
Description: The set of all possible relations between two sets is equinumerous to the set of all mappings from one set to the powerset of the other. See rfovf1od 43333 for a demonstration of a natural one-to-one onto mapping. (Contributed by RP, 27-Apr-2021.)
Assertion
Ref Expression
enrelmap ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐵m 𝐴))

Proof of Theorem enrelmap
StepHypRef Expression
1 xpcomeng 9066 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴))
2 pwen 9152 . . . 4 ((𝐴 × 𝐵) ≈ (𝐵 × 𝐴) → 𝒫 (𝐴 × 𝐵) ≈ 𝒫 (𝐵 × 𝐴))
31, 2syl 17 . . 3 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴 × 𝐵) ≈ 𝒫 (𝐵 × 𝐴))
4 xpexg 7734 . . . . 5 ((𝐵𝑊𝐴𝑉) → (𝐵 × 𝐴) ∈ V)
54ancoms 458 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐵 × 𝐴) ∈ V)
6 pw2eng 9080 . . . 4 ((𝐵 × 𝐴) ∈ V → 𝒫 (𝐵 × 𝐴) ≈ (2om (𝐵 × 𝐴)))
75, 6syl 17 . . 3 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐵 × 𝐴) ≈ (2om (𝐵 × 𝐴)))
8 entr 9004 . . 3 ((𝒫 (𝐴 × 𝐵) ≈ 𝒫 (𝐵 × 𝐴) ∧ 𝒫 (𝐵 × 𝐴) ≈ (2om (𝐵 × 𝐴))) → 𝒫 (𝐴 × 𝐵) ≈ (2om (𝐵 × 𝐴)))
93, 7, 8syl2anc 583 . 2 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (2om (𝐵 × 𝐴)))
10 pw2eng 9080 . . . . 5 (𝐵𝑊 → 𝒫 𝐵 ≈ (2om 𝐵))
11 enrefg 8982 . . . . 5 (𝐴𝑉𝐴𝐴)
12 mapen 9143 . . . . 5 ((𝒫 𝐵 ≈ (2om 𝐵) ∧ 𝐴𝐴) → (𝒫 𝐵m 𝐴) ≈ ((2om 𝐵) ↑m 𝐴))
1310, 11, 12syl2anr 596 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝒫 𝐵m 𝐴) ≈ ((2om 𝐵) ↑m 𝐴))
14 2on 8481 . . . . 5 2o ∈ On
15 simpr 484 . . . . 5 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
16 simpl 482 . . . . 5 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
17 mapxpen 9145 . . . . 5 ((2o ∈ On ∧ 𝐵𝑊𝐴𝑉) → ((2om 𝐵) ↑m 𝐴) ≈ (2om (𝐵 × 𝐴)))
1814, 15, 16, 17mp3an2i 1462 . . . 4 ((𝐴𝑉𝐵𝑊) → ((2om 𝐵) ↑m 𝐴) ≈ (2om (𝐵 × 𝐴)))
19 entr 9004 . . . 4 (((𝒫 𝐵m 𝐴) ≈ ((2om 𝐵) ↑m 𝐴) ∧ ((2om 𝐵) ↑m 𝐴) ≈ (2om (𝐵 × 𝐴))) → (𝒫 𝐵m 𝐴) ≈ (2om (𝐵 × 𝐴)))
2013, 18, 19syl2anc 583 . . 3 ((𝐴𝑉𝐵𝑊) → (𝒫 𝐵m 𝐴) ≈ (2om (𝐵 × 𝐴)))
2120ensymd 9003 . 2 ((𝐴𝑉𝐵𝑊) → (2om (𝐵 × 𝐴)) ≈ (𝒫 𝐵m 𝐴))
22 entr 9004 . 2 ((𝒫 (𝐴 × 𝐵) ≈ (2om (𝐵 × 𝐴)) ∧ (2om (𝐵 × 𝐴)) ≈ (𝒫 𝐵m 𝐴)) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐵m 𝐴))
239, 21, 22syl2anc 583 1 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐵m 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2098  Vcvv 3468  𝒫 cpw 4597   class class class wbr 5141   × cxp 5667  Oncon0 6358  (class class class)co 7405  2oc2o 8461  m cmap 8822  cen 8938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-1o 8467  df-2o 8468  df-er 8705  df-map 8824  df-en 8942
This theorem is referenced by:  enrelmapr  43325  enmappw  43326
  Copyright terms: Public domain W3C validator