Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > enrelmap | Structured version Visualization version GIF version |
Description: The set of all possible relations between two sets is equinumerous to the set of all mappings from one set to the powerset of the other. See rfovf1od 41614 for a demonstration of a natural one-to-one onto mapping. (Contributed by RP, 27-Apr-2021.) |
Ref | Expression |
---|---|
enrelmap | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐵 ↑m 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpcomeng 8851 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)) | |
2 | pwen 8937 | . . . 4 ⊢ ((𝐴 × 𝐵) ≈ (𝐵 × 𝐴) → 𝒫 (𝐴 × 𝐵) ≈ 𝒫 (𝐵 × 𝐴)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 × 𝐵) ≈ 𝒫 (𝐵 × 𝐴)) |
4 | xpexg 7600 | . . . . 5 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐵 × 𝐴) ∈ V) | |
5 | 4 | ancoms 459 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 × 𝐴) ∈ V) |
6 | pw2eng 8865 | . . . 4 ⊢ ((𝐵 × 𝐴) ∈ V → 𝒫 (𝐵 × 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐵 × 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) |
8 | entr 8792 | . . 3 ⊢ ((𝒫 (𝐴 × 𝐵) ≈ 𝒫 (𝐵 × 𝐴) ∧ 𝒫 (𝐵 × 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) → 𝒫 (𝐴 × 𝐵) ≈ (2o ↑m (𝐵 × 𝐴))) | |
9 | 3, 7, 8 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (2o ↑m (𝐵 × 𝐴))) |
10 | pw2eng 8865 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → 𝒫 𝐵 ≈ (2o ↑m 𝐵)) | |
11 | enrefg 8772 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴) | |
12 | mapen 8928 | . . . . 5 ⊢ ((𝒫 𝐵 ≈ (2o ↑m 𝐵) ∧ 𝐴 ≈ 𝐴) → (𝒫 𝐵 ↑m 𝐴) ≈ ((2o ↑m 𝐵) ↑m 𝐴)) | |
13 | 10, 11, 12 | syl2anr 597 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝒫 𝐵 ↑m 𝐴) ≈ ((2o ↑m 𝐵) ↑m 𝐴)) |
14 | 2on 8311 | . . . . 5 ⊢ 2o ∈ On | |
15 | simpr 485 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ 𝑊) | |
16 | simpl 483 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
17 | mapxpen 8930 | . . . . 5 ⊢ ((2o ∈ On ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ((2o ↑m 𝐵) ↑m 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) | |
18 | 14, 15, 16, 17 | mp3an2i 1465 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((2o ↑m 𝐵) ↑m 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) |
19 | entr 8792 | . . . 4 ⊢ (((𝒫 𝐵 ↑m 𝐴) ≈ ((2o ↑m 𝐵) ↑m 𝐴) ∧ ((2o ↑m 𝐵) ↑m 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) → (𝒫 𝐵 ↑m 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) | |
20 | 13, 18, 19 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝒫 𝐵 ↑m 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) |
21 | 20 | ensymd 8791 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2o ↑m (𝐵 × 𝐴)) ≈ (𝒫 𝐵 ↑m 𝐴)) |
22 | entr 8792 | . 2 ⊢ ((𝒫 (𝐴 × 𝐵) ≈ (2o ↑m (𝐵 × 𝐴)) ∧ (2o ↑m (𝐵 × 𝐴)) ≈ (𝒫 𝐵 ↑m 𝐴)) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐵 ↑m 𝐴)) | |
23 | 9, 21, 22 | syl2anc 584 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐵 ↑m 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3432 𝒫 cpw 4533 class class class wbr 5074 × cxp 5587 Oncon0 6266 (class class class)co 7275 2oc2o 8291 ↑m cmap 8615 ≈ cen 8730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-en 8734 |
This theorem is referenced by: enrelmapr 41606 enmappw 41607 |
Copyright terms: Public domain | W3C validator |