| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > enrelmap | Structured version Visualization version GIF version | ||
| Description: The set of all possible relations between two sets is equinumerous to the set of all mappings from one set to the powerset of the other. See rfovf1od 44123 for a demonstration of a natural one-to-one onto mapping. (Contributed by RP, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| enrelmap | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐵 ↑m 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpcomeng 8989 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)) | |
| 2 | pwen 9070 | . . . 4 ⊢ ((𝐴 × 𝐵) ≈ (𝐵 × 𝐴) → 𝒫 (𝐴 × 𝐵) ≈ 𝒫 (𝐵 × 𝐴)) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 × 𝐵) ≈ 𝒫 (𝐵 × 𝐴)) |
| 4 | xpexg 7689 | . . . . 5 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐵 × 𝐴) ∈ V) | |
| 5 | 4 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 × 𝐴) ∈ V) |
| 6 | pw2eng 9003 | . . . 4 ⊢ ((𝐵 × 𝐴) ∈ V → 𝒫 (𝐵 × 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐵 × 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) |
| 8 | entr 8935 | . . 3 ⊢ ((𝒫 (𝐴 × 𝐵) ≈ 𝒫 (𝐵 × 𝐴) ∧ 𝒫 (𝐵 × 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) → 𝒫 (𝐴 × 𝐵) ≈ (2o ↑m (𝐵 × 𝐴))) | |
| 9 | 3, 7, 8 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (2o ↑m (𝐵 × 𝐴))) |
| 10 | pw2eng 9003 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → 𝒫 𝐵 ≈ (2o ↑m 𝐵)) | |
| 11 | enrefg 8913 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴) | |
| 12 | mapen 9061 | . . . . 5 ⊢ ((𝒫 𝐵 ≈ (2o ↑m 𝐵) ∧ 𝐴 ≈ 𝐴) → (𝒫 𝐵 ↑m 𝐴) ≈ ((2o ↑m 𝐵) ↑m 𝐴)) | |
| 13 | 10, 11, 12 | syl2anr 597 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝒫 𝐵 ↑m 𝐴) ≈ ((2o ↑m 𝐵) ↑m 𝐴)) |
| 14 | 2on 8404 | . . . . 5 ⊢ 2o ∈ On | |
| 15 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ 𝑊) | |
| 16 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
| 17 | mapxpen 9063 | . . . . 5 ⊢ ((2o ∈ On ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ((2o ↑m 𝐵) ↑m 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) | |
| 18 | 14, 15, 16, 17 | mp3an2i 1468 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((2o ↑m 𝐵) ↑m 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) |
| 19 | entr 8935 | . . . 4 ⊢ (((𝒫 𝐵 ↑m 𝐴) ≈ ((2o ↑m 𝐵) ↑m 𝐴) ∧ ((2o ↑m 𝐵) ↑m 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) → (𝒫 𝐵 ↑m 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) | |
| 20 | 13, 18, 19 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝒫 𝐵 ↑m 𝐴) ≈ (2o ↑m (𝐵 × 𝐴))) |
| 21 | 20 | ensymd 8934 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2o ↑m (𝐵 × 𝐴)) ≈ (𝒫 𝐵 ↑m 𝐴)) |
| 22 | entr 8935 | . 2 ⊢ ((𝒫 (𝐴 × 𝐵) ≈ (2o ↑m (𝐵 × 𝐴)) ∧ (2o ↑m (𝐵 × 𝐴)) ≈ (𝒫 𝐵 ↑m 𝐴)) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐵 ↑m 𝐴)) | |
| 23 | 9, 21, 22 | syl2anc 584 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐵 ↑m 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 Vcvv 3437 𝒫 cpw 4549 class class class wbr 5093 × cxp 5617 Oncon0 6311 (class class class)co 7352 2oc2o 8385 ↑m cmap 8756 ≈ cen 8872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-en 8876 |
| This theorem is referenced by: enrelmapr 44115 enmappw 44116 |
| Copyright terms: Public domain | W3C validator |