MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omxpen Structured version   Visualization version   GIF version

Theorem omxpen 8814
Description: The cardinal and ordinal products are always equinumerous. Exercise 10 of [TakeutiZaring] p. 89. (Contributed by Mario Carneiro, 3-Mar-2013.)
Assertion
Ref Expression
omxpen ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ≈ (𝐴 × 𝐵))

Proof of Theorem omxpen
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpcomeng 8804 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴))
2 xpexg 7578 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 × 𝐴) ∈ V)
32ancoms 458 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 × 𝐴) ∈ V)
4 omcl 8328 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
5 eqid 2738 . . . . 5 (𝑥𝐵, 𝑦𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦)) = (𝑥𝐵, 𝑦𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦))
65omxpenlem 8813 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥𝐵, 𝑦𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦)):(𝐵 × 𝐴)–1-1-onto→(𝐴 ·o 𝐵))
7 f1oen2g 8711 . . . 4 (((𝐵 × 𝐴) ∈ V ∧ (𝐴 ·o 𝐵) ∈ On ∧ (𝑥𝐵, 𝑦𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦)):(𝐵 × 𝐴)–1-1-onto→(𝐴 ·o 𝐵)) → (𝐵 × 𝐴) ≈ (𝐴 ·o 𝐵))
83, 4, 6, 7syl3anc 1369 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 × 𝐴) ≈ (𝐴 ·o 𝐵))
9 entr 8747 . . 3 (((𝐴 × 𝐵) ≈ (𝐵 × 𝐴) ∧ (𝐵 × 𝐴) ≈ (𝐴 ·o 𝐵)) → (𝐴 × 𝐵) ≈ (𝐴 ·o 𝐵))
101, 8, 9syl2anc 583 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 × 𝐵) ≈ (𝐴 ·o 𝐵))
1110ensymd 8746 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ≈ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3422   class class class wbr 5070   × cxp 5578  Oncon0 6251  1-1-ontowf1o 6417  (class class class)co 7255  cmpo 7257   +o coa 8264   ·o comu 8265  cen 8688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-en 8692
This theorem is referenced by:  xpnum  9640  infxpenc2  9709
  Copyright terms: Public domain W3C validator