|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > omxpen | Structured version Visualization version GIF version | ||
| Description: The cardinal and ordinal products are always equinumerous. Exercise 10 of [TakeutiZaring] p. 89. (Contributed by Mario Carneiro, 3-Mar-2013.) | 
| Ref | Expression | 
|---|---|
| omxpen | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ≈ (𝐴 × 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xpcomeng 9105 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)) | |
| 2 | xpexg 7771 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 × 𝐴) ∈ V) | |
| 3 | 2 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 × 𝐴) ∈ V) | 
| 4 | omcl 8575 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On) | |
| 5 | eqid 2736 | . . . . 5 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦)) | |
| 6 | 5 | omxpenlem 9114 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦)):(𝐵 × 𝐴)–1-1-onto→(𝐴 ·o 𝐵)) | 
| 7 | f1oen2g 9010 | . . . 4 ⊢ (((𝐵 × 𝐴) ∈ V ∧ (𝐴 ·o 𝐵) ∈ On ∧ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦)):(𝐵 × 𝐴)–1-1-onto→(𝐴 ·o 𝐵)) → (𝐵 × 𝐴) ≈ (𝐴 ·o 𝐵)) | |
| 8 | 3, 4, 6, 7 | syl3anc 1372 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 × 𝐴) ≈ (𝐴 ·o 𝐵)) | 
| 9 | entr 9047 | . . 3 ⊢ (((𝐴 × 𝐵) ≈ (𝐵 × 𝐴) ∧ (𝐵 × 𝐴) ≈ (𝐴 ·o 𝐵)) → (𝐴 × 𝐵) ≈ (𝐴 ·o 𝐵)) | |
| 10 | 1, 8, 9 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 × 𝐵) ≈ (𝐴 ·o 𝐵)) | 
| 11 | 10 | ensymd 9046 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ≈ (𝐴 × 𝐵)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 Vcvv 3479 class class class wbr 5142 × cxp 5682 Oncon0 6383 –1-1-onto→wf1o 6559 (class class class)co 7432 ∈ cmpo 7434 +o coa 8504 ·o comu 8505 ≈ cen 8983 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-oadd 8511 df-omul 8512 df-er 8746 df-en 8987 | 
| This theorem is referenced by: xpnum 9992 infxpenc2 10063 | 
| Copyright terms: Public domain | W3C validator |