MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omxpen Structured version   Visualization version   GIF version

Theorem omxpen 8861
Description: The cardinal and ordinal products are always equinumerous. Exercise 10 of [TakeutiZaring] p. 89. (Contributed by Mario Carneiro, 3-Mar-2013.)
Assertion
Ref Expression
omxpen ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ≈ (𝐴 × 𝐵))

Proof of Theorem omxpen
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpcomeng 8851 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴))
2 xpexg 7600 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 × 𝐴) ∈ V)
32ancoms 459 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 × 𝐴) ∈ V)
4 omcl 8366 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
5 eqid 2738 . . . . 5 (𝑥𝐵, 𝑦𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦)) = (𝑥𝐵, 𝑦𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦))
65omxpenlem 8860 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥𝐵, 𝑦𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦)):(𝐵 × 𝐴)–1-1-onto→(𝐴 ·o 𝐵))
7 f1oen2g 8756 . . . 4 (((𝐵 × 𝐴) ∈ V ∧ (𝐴 ·o 𝐵) ∈ On ∧ (𝑥𝐵, 𝑦𝐴 ↦ ((𝐴 ·o 𝑥) +o 𝑦)):(𝐵 × 𝐴)–1-1-onto→(𝐴 ·o 𝐵)) → (𝐵 × 𝐴) ≈ (𝐴 ·o 𝐵))
83, 4, 6, 7syl3anc 1370 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 × 𝐴) ≈ (𝐴 ·o 𝐵))
9 entr 8792 . . 3 (((𝐴 × 𝐵) ≈ (𝐵 × 𝐴) ∧ (𝐵 × 𝐴) ≈ (𝐴 ·o 𝐵)) → (𝐴 × 𝐵) ≈ (𝐴 ·o 𝐵))
101, 8, 9syl2anc 584 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 × 𝐵) ≈ (𝐴 ·o 𝐵))
1110ensymd 8791 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ≈ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  Vcvv 3432   class class class wbr 5074   × cxp 5587  Oncon0 6266  1-1-ontowf1o 6432  (class class class)co 7275  cmpo 7277   +o coa 8294   ·o comu 8295  cen 8730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-omul 8302  df-er 8498  df-en 8734
This theorem is referenced by:  xpnum  9709  infxpenc2  9778
  Copyright terms: Public domain W3C validator