MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relxpchom Structured version   Visualization version   GIF version

Theorem relxpchom 18145
Description: A hom-set in the binary product of categories is a relation. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
relxpchom.t 𝑇 = (𝐶 ×c 𝐷)
relxpchom.k 𝐾 = (Hom ‘𝑇)
Assertion
Ref Expression
relxpchom Rel (𝑋𝐾𝑌)

Proof of Theorem relxpchom
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpss 5685 . . . 4 (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))) ⊆ (V × V)
21rgen2w 3060 . . 3 𝑢 ∈ (Base‘𝑇)∀𝑣 ∈ (Base‘𝑇)(((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))) ⊆ (V × V)
3 relxpchom.t . . . . 5 𝑇 = (𝐶 ×c 𝐷)
4 eqid 2726 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
5 eqid 2726 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
6 eqid 2726 . . . . 5 (Hom ‘𝐷) = (Hom ‘𝐷)
7 relxpchom.k . . . . 5 𝐾 = (Hom ‘𝑇)
83, 4, 5, 6, 7xpchomfval 18143 . . . 4 𝐾 = (𝑢 ∈ (Base‘𝑇), 𝑣 ∈ (Base‘𝑇) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))
98ovmptss 8079 . . 3 (∀𝑢 ∈ (Base‘𝑇)∀𝑣 ∈ (Base‘𝑇)(((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))) ⊆ (V × V) → (𝑋𝐾𝑌) ⊆ (V × V))
102, 9ax-mp 5 . 2 (𝑋𝐾𝑌) ⊆ (V × V)
11 df-rel 5676 . 2 (Rel (𝑋𝐾𝑌) ↔ (𝑋𝐾𝑌) ⊆ (V × V))
1210, 11mpbir 230 1 Rel (𝑋𝐾𝑌)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wral 3055  Vcvv 3468  wss 3943   × cxp 5667  Rel wrel 5674  cfv 6537  (class class class)co 7405  1st c1st 7972  2nd c2nd 7973  Basecbs 17153  Hom chom 17217   ×c cxpc 18132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-fz 13491  df-struct 17089  df-slot 17124  df-ndx 17136  df-base 17154  df-hom 17230  df-cco 17231  df-xpc 18136
This theorem is referenced by:  1st2ndprf  18170
  Copyright terms: Public domain W3C validator