Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzmptshftfval Structured version   Visualization version   GIF version

Theorem uzmptshftfval 44342
Description: When 𝐹 is a maps-to function on some set of upper integers 𝑍 that returns a set 𝐵, (𝐹 shift 𝑁) is another maps-to function on the shifted set of upper integers 𝑊. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
uzmptshftfval.f 𝐹 = (𝑥𝑍𝐵)
uzmptshftfval.b 𝐵 ∈ V
uzmptshftfval.c (𝑥 = (𝑦𝑁) → 𝐵 = 𝐶)
uzmptshftfval.z 𝑍 = (ℤ𝑀)
uzmptshftfval.w 𝑊 = (ℤ‘(𝑀 + 𝑁))
uzmptshftfval.m (𝜑𝑀 ∈ ℤ)
uzmptshftfval.n (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
uzmptshftfval (𝜑 → (𝐹 shift 𝑁) = (𝑦𝑊𝐶))
Distinct variable groups:   𝑥,𝑦,𝑁   𝑥,𝑍,𝑦   𝜑,𝑦   𝑥,𝐶   𝑦,𝐹   𝑦,𝑀   𝑦,𝑊
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑦)   𝐹(𝑥)   𝑀(𝑥)   𝑊(𝑥)

Proof of Theorem uzmptshftfval
StepHypRef Expression
1 uzmptshftfval.b . . . . . 6 𝐵 ∈ V
2 uzmptshftfval.f . . . . . 6 𝐹 = (𝑥𝑍𝐵)
31, 2fnmpti 6664 . . . . 5 𝐹 Fn 𝑍
4 uzmptshftfval.n . . . . . 6 (𝜑𝑁 ∈ ℤ)
54zcnd 12646 . . . . 5 (𝜑𝑁 ∈ ℂ)
6 uzmptshftfval.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
76fvexi 6875 . . . . . . . 8 𝑍 ∈ V
87mptex 7200 . . . . . . 7 (𝑥𝑍𝐵) ∈ V
92, 8eqeltri 2825 . . . . . 6 𝐹 ∈ V
109shftfn 15046 . . . . 5 ((𝐹 Fn 𝑍𝑁 ∈ ℂ) → (𝐹 shift 𝑁) Fn {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ 𝑍})
113, 5, 10sylancr 587 . . . 4 (𝜑 → (𝐹 shift 𝑁) Fn {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ 𝑍})
12 uzmptshftfval.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
13 shftuz 15042 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ (ℤ𝑀)} = (ℤ‘(𝑀 + 𝑁)))
144, 12, 13syl2anc 584 . . . . . 6 (𝜑 → {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ (ℤ𝑀)} = (ℤ‘(𝑀 + 𝑁)))
156eleq2i 2821 . . . . . . 7 ((𝑦𝑁) ∈ 𝑍 ↔ (𝑦𝑁) ∈ (ℤ𝑀))
1615rabbii 3414 . . . . . 6 {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ 𝑍} = {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ (ℤ𝑀)}
17 uzmptshftfval.w . . . . . 6 𝑊 = (ℤ‘(𝑀 + 𝑁))
1814, 16, 173eqtr4g 2790 . . . . 5 (𝜑 → {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ 𝑍} = 𝑊)
1918fneq2d 6615 . . . 4 (𝜑 → ((𝐹 shift 𝑁) Fn {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ 𝑍} ↔ (𝐹 shift 𝑁) Fn 𝑊))
2011, 19mpbid 232 . . 3 (𝜑 → (𝐹 shift 𝑁) Fn 𝑊)
21 dffn5 6922 . . 3 ((𝐹 shift 𝑁) Fn 𝑊 ↔ (𝐹 shift 𝑁) = (𝑦𝑊 ↦ ((𝐹 shift 𝑁)‘𝑦)))
2220, 21sylib 218 . 2 (𝜑 → (𝐹 shift 𝑁) = (𝑦𝑊 ↦ ((𝐹 shift 𝑁)‘𝑦)))
23 uzssz 12821 . . . . . . . 8 (ℤ‘(𝑀 + 𝑁)) ⊆ ℤ
2417, 23eqsstri 3996 . . . . . . 7 𝑊 ⊆ ℤ
25 zsscn 12544 . . . . . . 7 ℤ ⊆ ℂ
2624, 25sstri 3959 . . . . . 6 𝑊 ⊆ ℂ
2726sseli 3945 . . . . 5 (𝑦𝑊𝑦 ∈ ℂ)
289shftval 15047 . . . . 5 ((𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦𝑁)))
295, 27, 28syl2an 596 . . . 4 ((𝜑𝑦𝑊) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦𝑁)))
3017eleq2i 2821 . . . . . . 7 (𝑦𝑊𝑦 ∈ (ℤ‘(𝑀 + 𝑁)))
3112, 4jca 511 . . . . . . . 8 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
32 eluzsub 12830 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑦 ∈ (ℤ‘(𝑀 + 𝑁))) → (𝑦𝑁) ∈ (ℤ𝑀))
33323expa 1118 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑦 ∈ (ℤ‘(𝑀 + 𝑁))) → (𝑦𝑁) ∈ (ℤ𝑀))
3431, 33sylan 580 . . . . . . 7 ((𝜑𝑦 ∈ (ℤ‘(𝑀 + 𝑁))) → (𝑦𝑁) ∈ (ℤ𝑀))
3530, 34sylan2b 594 . . . . . 6 ((𝜑𝑦𝑊) → (𝑦𝑁) ∈ (ℤ𝑀))
3635, 6eleqtrrdi 2840 . . . . 5 ((𝜑𝑦𝑊) → (𝑦𝑁) ∈ 𝑍)
37 uzmptshftfval.c . . . . . 6 (𝑥 = (𝑦𝑁) → 𝐵 = 𝐶)
3837, 2, 1fvmpt3i 6976 . . . . 5 ((𝑦𝑁) ∈ 𝑍 → (𝐹‘(𝑦𝑁)) = 𝐶)
3936, 38syl 17 . . . 4 ((𝜑𝑦𝑊) → (𝐹‘(𝑦𝑁)) = 𝐶)
4029, 39eqtrd 2765 . . 3 ((𝜑𝑦𝑊) → ((𝐹 shift 𝑁)‘𝑦) = 𝐶)
4140mpteq2dva 5203 . 2 (𝜑 → (𝑦𝑊 ↦ ((𝐹 shift 𝑁)‘𝑦)) = (𝑦𝑊𝐶))
4222, 41eqtrd 2765 1 (𝜑 → (𝐹 shift 𝑁) = (𝑦𝑊𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  cmpt 5191   Fn wfn 6509  cfv 6514  (class class class)co 7390  cc 11073   + caddc 11078  cmin 11412  cz 12536  cuz 12800   shift cshi 15039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-shft 15040
This theorem is referenced by:  dvradcnv2  44343  binomcxplemnotnn0  44352
  Copyright terms: Public domain W3C validator