Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzmptshftfval Structured version   Visualization version   GIF version

Theorem uzmptshftfval 41050
Description: When 𝐹 is a maps-to function on some set of upper integers 𝑍 that returns a set 𝐵, (𝐹 shift 𝑁) is another maps-to function on the shifted set of upper integers 𝑊. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
uzmptshftfval.f 𝐹 = (𝑥𝑍𝐵)
uzmptshftfval.b 𝐵 ∈ V
uzmptshftfval.c (𝑥 = (𝑦𝑁) → 𝐵 = 𝐶)
uzmptshftfval.z 𝑍 = (ℤ𝑀)
uzmptshftfval.w 𝑊 = (ℤ‘(𝑀 + 𝑁))
uzmptshftfval.m (𝜑𝑀 ∈ ℤ)
uzmptshftfval.n (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
uzmptshftfval (𝜑 → (𝐹 shift 𝑁) = (𝑦𝑊𝐶))
Distinct variable groups:   𝑥,𝑦,𝑁   𝑥,𝑍,𝑦   𝜑,𝑦   𝑥,𝐶   𝑦,𝐹   𝑦,𝑀   𝑦,𝑊
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑦)   𝐹(𝑥)   𝑀(𝑥)   𝑊(𝑥)

Proof of Theorem uzmptshftfval
StepHypRef Expression
1 uzmptshftfval.b . . . . . 6 𝐵 ∈ V
2 uzmptshftfval.f . . . . . 6 𝐹 = (𝑥𝑍𝐵)
31, 2fnmpti 6463 . . . . 5 𝐹 Fn 𝑍
4 uzmptshftfval.n . . . . . 6 (𝜑𝑁 ∈ ℤ)
54zcnd 12076 . . . . 5 (𝜑𝑁 ∈ ℂ)
6 uzmptshftfval.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
76fvexi 6659 . . . . . . . 8 𝑍 ∈ V
87mptex 6963 . . . . . . 7 (𝑥𝑍𝐵) ∈ V
92, 8eqeltri 2886 . . . . . 6 𝐹 ∈ V
109shftfn 14424 . . . . 5 ((𝐹 Fn 𝑍𝑁 ∈ ℂ) → (𝐹 shift 𝑁) Fn {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ 𝑍})
113, 5, 10sylancr 590 . . . 4 (𝜑 → (𝐹 shift 𝑁) Fn {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ 𝑍})
12 uzmptshftfval.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
13 shftuz 14420 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ (ℤ𝑀)} = (ℤ‘(𝑀 + 𝑁)))
144, 12, 13syl2anc 587 . . . . . 6 (𝜑 → {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ (ℤ𝑀)} = (ℤ‘(𝑀 + 𝑁)))
156eleq2i 2881 . . . . . . 7 ((𝑦𝑁) ∈ 𝑍 ↔ (𝑦𝑁) ∈ (ℤ𝑀))
1615rabbii 3420 . . . . . 6 {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ 𝑍} = {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ (ℤ𝑀)}
17 uzmptshftfval.w . . . . . 6 𝑊 = (ℤ‘(𝑀 + 𝑁))
1814, 16, 173eqtr4g 2858 . . . . 5 (𝜑 → {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ 𝑍} = 𝑊)
1918fneq2d 6417 . . . 4 (𝜑 → ((𝐹 shift 𝑁) Fn {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ 𝑍} ↔ (𝐹 shift 𝑁) Fn 𝑊))
2011, 19mpbid 235 . . 3 (𝜑 → (𝐹 shift 𝑁) Fn 𝑊)
21 dffn5 6699 . . 3 ((𝐹 shift 𝑁) Fn 𝑊 ↔ (𝐹 shift 𝑁) = (𝑦𝑊 ↦ ((𝐹 shift 𝑁)‘𝑦)))
2220, 21sylib 221 . 2 (𝜑 → (𝐹 shift 𝑁) = (𝑦𝑊 ↦ ((𝐹 shift 𝑁)‘𝑦)))
23 uzssz 12252 . . . . . . . 8 (ℤ‘(𝑀 + 𝑁)) ⊆ ℤ
2417, 23eqsstri 3949 . . . . . . 7 𝑊 ⊆ ℤ
25 zsscn 11977 . . . . . . 7 ℤ ⊆ ℂ
2624, 25sstri 3924 . . . . . 6 𝑊 ⊆ ℂ
2726sseli 3911 . . . . 5 (𝑦𝑊𝑦 ∈ ℂ)
289shftval 14425 . . . . 5 ((𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦𝑁)))
295, 27, 28syl2an 598 . . . 4 ((𝜑𝑦𝑊) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦𝑁)))
3017eleq2i 2881 . . . . . . 7 (𝑦𝑊𝑦 ∈ (ℤ‘(𝑀 + 𝑁)))
3112, 4jca 515 . . . . . . . 8 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
32 eluzsub 12262 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑦 ∈ (ℤ‘(𝑀 + 𝑁))) → (𝑦𝑁) ∈ (ℤ𝑀))
33323expa 1115 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑦 ∈ (ℤ‘(𝑀 + 𝑁))) → (𝑦𝑁) ∈ (ℤ𝑀))
3431, 33sylan 583 . . . . . . 7 ((𝜑𝑦 ∈ (ℤ‘(𝑀 + 𝑁))) → (𝑦𝑁) ∈ (ℤ𝑀))
3530, 34sylan2b 596 . . . . . 6 ((𝜑𝑦𝑊) → (𝑦𝑁) ∈ (ℤ𝑀))
3635, 6eleqtrrdi 2901 . . . . 5 ((𝜑𝑦𝑊) → (𝑦𝑁) ∈ 𝑍)
37 uzmptshftfval.c . . . . . 6 (𝑥 = (𝑦𝑁) → 𝐵 = 𝐶)
3837, 2, 1fvmpt3i 6750 . . . . 5 ((𝑦𝑁) ∈ 𝑍 → (𝐹‘(𝑦𝑁)) = 𝐶)
3936, 38syl 17 . . . 4 ((𝜑𝑦𝑊) → (𝐹‘(𝑦𝑁)) = 𝐶)
4029, 39eqtrd 2833 . . 3 ((𝜑𝑦𝑊) → ((𝐹 shift 𝑁)‘𝑦) = 𝐶)
4140mpteq2dva 5125 . 2 (𝜑 → (𝑦𝑊 ↦ ((𝐹 shift 𝑁)‘𝑦)) = (𝑦𝑊𝐶))
4222, 41eqtrd 2833 1 (𝜑 → (𝐹 shift 𝑁) = (𝑦𝑊𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {crab 3110  Vcvv 3441  cmpt 5110   Fn wfn 6319  cfv 6324  (class class class)co 7135  cc 10524   + caddc 10529  cmin 10859  cz 11969  cuz 12231   shift cshi 14417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-shft 14418
This theorem is referenced by:  dvradcnv2  41051  binomcxplemnotnn0  41060
  Copyright terms: Public domain W3C validator