![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > uzmptshftfval | Structured version Visualization version GIF version |
Description: When 𝐹 is a maps-to function on some set of upper integers 𝑍 that returns a set 𝐵, (𝐹 shift 𝑁) is another maps-to function on the shifted set of upper integers 𝑊. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
Ref | Expression |
---|---|
uzmptshftfval.f | ⊢ 𝐹 = (𝑥 ∈ 𝑍 ↦ 𝐵) |
uzmptshftfval.b | ⊢ 𝐵 ∈ V |
uzmptshftfval.c | ⊢ (𝑥 = (𝑦 − 𝑁) → 𝐵 = 𝐶) |
uzmptshftfval.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
uzmptshftfval.w | ⊢ 𝑊 = (ℤ≥‘(𝑀 + 𝑁)) |
uzmptshftfval.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
uzmptshftfval.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
Ref | Expression |
---|---|
uzmptshftfval | ⊢ (𝜑 → (𝐹 shift 𝑁) = (𝑦 ∈ 𝑊 ↦ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzmptshftfval.b | . . . . . 6 ⊢ 𝐵 ∈ V | |
2 | uzmptshftfval.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝑍 ↦ 𝐵) | |
3 | 1, 2 | fnmpti 6711 | . . . . 5 ⊢ 𝐹 Fn 𝑍 |
4 | uzmptshftfval.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
5 | 4 | zcnd 12720 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
6 | uzmptshftfval.z | . . . . . . . . 9 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
7 | 6 | fvexi 6920 | . . . . . . . 8 ⊢ 𝑍 ∈ V |
8 | 7 | mptex 7242 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑍 ↦ 𝐵) ∈ V |
9 | 2, 8 | eqeltri 2834 | . . . . . 6 ⊢ 𝐹 ∈ V |
10 | 9 | shftfn 15108 | . . . . 5 ⊢ ((𝐹 Fn 𝑍 ∧ 𝑁 ∈ ℂ) → (𝐹 shift 𝑁) Fn {𝑦 ∈ ℂ ∣ (𝑦 − 𝑁) ∈ 𝑍}) |
11 | 3, 5, 10 | sylancr 587 | . . . 4 ⊢ (𝜑 → (𝐹 shift 𝑁) Fn {𝑦 ∈ ℂ ∣ (𝑦 − 𝑁) ∈ 𝑍}) |
12 | uzmptshftfval.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
13 | shftuz 15104 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → {𝑦 ∈ ℂ ∣ (𝑦 − 𝑁) ∈ (ℤ≥‘𝑀)} = (ℤ≥‘(𝑀 + 𝑁))) | |
14 | 4, 12, 13 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → {𝑦 ∈ ℂ ∣ (𝑦 − 𝑁) ∈ (ℤ≥‘𝑀)} = (ℤ≥‘(𝑀 + 𝑁))) |
15 | 6 | eleq2i 2830 | . . . . . . 7 ⊢ ((𝑦 − 𝑁) ∈ 𝑍 ↔ (𝑦 − 𝑁) ∈ (ℤ≥‘𝑀)) |
16 | 15 | rabbii 3438 | . . . . . 6 ⊢ {𝑦 ∈ ℂ ∣ (𝑦 − 𝑁) ∈ 𝑍} = {𝑦 ∈ ℂ ∣ (𝑦 − 𝑁) ∈ (ℤ≥‘𝑀)} |
17 | uzmptshftfval.w | . . . . . 6 ⊢ 𝑊 = (ℤ≥‘(𝑀 + 𝑁)) | |
18 | 14, 16, 17 | 3eqtr4g 2799 | . . . . 5 ⊢ (𝜑 → {𝑦 ∈ ℂ ∣ (𝑦 − 𝑁) ∈ 𝑍} = 𝑊) |
19 | 18 | fneq2d 6662 | . . . 4 ⊢ (𝜑 → ((𝐹 shift 𝑁) Fn {𝑦 ∈ ℂ ∣ (𝑦 − 𝑁) ∈ 𝑍} ↔ (𝐹 shift 𝑁) Fn 𝑊)) |
20 | 11, 19 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐹 shift 𝑁) Fn 𝑊) |
21 | dffn5 6966 | . . 3 ⊢ ((𝐹 shift 𝑁) Fn 𝑊 ↔ (𝐹 shift 𝑁) = (𝑦 ∈ 𝑊 ↦ ((𝐹 shift 𝑁)‘𝑦))) | |
22 | 20, 21 | sylib 218 | . 2 ⊢ (𝜑 → (𝐹 shift 𝑁) = (𝑦 ∈ 𝑊 ↦ ((𝐹 shift 𝑁)‘𝑦))) |
23 | uzssz 12896 | . . . . . . . 8 ⊢ (ℤ≥‘(𝑀 + 𝑁)) ⊆ ℤ | |
24 | 17, 23 | eqsstri 4029 | . . . . . . 7 ⊢ 𝑊 ⊆ ℤ |
25 | zsscn 12618 | . . . . . . 7 ⊢ ℤ ⊆ ℂ | |
26 | 24, 25 | sstri 4004 | . . . . . 6 ⊢ 𝑊 ⊆ ℂ |
27 | 26 | sseli 3990 | . . . . 5 ⊢ (𝑦 ∈ 𝑊 → 𝑦 ∈ ℂ) |
28 | 9 | shftval 15109 | . . . . 5 ⊢ ((𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦 − 𝑁))) |
29 | 5, 27, 28 | syl2an 596 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑊) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦 − 𝑁))) |
30 | 17 | eleq2i 2830 | . . . . . . 7 ⊢ (𝑦 ∈ 𝑊 ↔ 𝑦 ∈ (ℤ≥‘(𝑀 + 𝑁))) |
31 | 12, 4 | jca 511 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
32 | eluzsub 12905 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑦 ∈ (ℤ≥‘(𝑀 + 𝑁))) → (𝑦 − 𝑁) ∈ (ℤ≥‘𝑀)) | |
33 | 32 | 3expa 1117 | . . . . . . . 8 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑦 ∈ (ℤ≥‘(𝑀 + 𝑁))) → (𝑦 − 𝑁) ∈ (ℤ≥‘𝑀)) |
34 | 31, 33 | sylan 580 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℤ≥‘(𝑀 + 𝑁))) → (𝑦 − 𝑁) ∈ (ℤ≥‘𝑀)) |
35 | 30, 34 | sylan2b 594 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑊) → (𝑦 − 𝑁) ∈ (ℤ≥‘𝑀)) |
36 | 35, 6 | eleqtrrdi 2849 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑊) → (𝑦 − 𝑁) ∈ 𝑍) |
37 | uzmptshftfval.c | . . . . . 6 ⊢ (𝑥 = (𝑦 − 𝑁) → 𝐵 = 𝐶) | |
38 | 37, 2, 1 | fvmpt3i 7020 | . . . . 5 ⊢ ((𝑦 − 𝑁) ∈ 𝑍 → (𝐹‘(𝑦 − 𝑁)) = 𝐶) |
39 | 36, 38 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑊) → (𝐹‘(𝑦 − 𝑁)) = 𝐶) |
40 | 29, 39 | eqtrd 2774 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑊) → ((𝐹 shift 𝑁)‘𝑦) = 𝐶) |
41 | 40 | mpteq2dva 5247 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑊 ↦ ((𝐹 shift 𝑁)‘𝑦)) = (𝑦 ∈ 𝑊 ↦ 𝐶)) |
42 | 22, 41 | eqtrd 2774 | 1 ⊢ (𝜑 → (𝐹 shift 𝑁) = (𝑦 ∈ 𝑊 ↦ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 {crab 3432 Vcvv 3477 ↦ cmpt 5230 Fn wfn 6557 ‘cfv 6562 (class class class)co 7430 ℂcc 11150 + caddc 11155 − cmin 11489 ℤcz 12610 ℤ≥cuz 12875 shift cshi 15101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-n0 12524 df-z 12611 df-uz 12876 df-shft 15102 |
This theorem is referenced by: dvradcnv2 44342 binomcxplemnotnn0 44351 |
Copyright terms: Public domain | W3C validator |