| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uzmptshftfval | Structured version Visualization version GIF version | ||
| Description: When 𝐹 is a maps-to function on some set of upper integers 𝑍 that returns a set 𝐵, (𝐹 shift 𝑁) is another maps-to function on the shifted set of upper integers 𝑊. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| Ref | Expression |
|---|---|
| uzmptshftfval.f | ⊢ 𝐹 = (𝑥 ∈ 𝑍 ↦ 𝐵) |
| uzmptshftfval.b | ⊢ 𝐵 ∈ V |
| uzmptshftfval.c | ⊢ (𝑥 = (𝑦 − 𝑁) → 𝐵 = 𝐶) |
| uzmptshftfval.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| uzmptshftfval.w | ⊢ 𝑊 = (ℤ≥‘(𝑀 + 𝑁)) |
| uzmptshftfval.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| uzmptshftfval.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| Ref | Expression |
|---|---|
| uzmptshftfval | ⊢ (𝜑 → (𝐹 shift 𝑁) = (𝑦 ∈ 𝑊 ↦ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzmptshftfval.b | . . . . . 6 ⊢ 𝐵 ∈ V | |
| 2 | uzmptshftfval.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝑍 ↦ 𝐵) | |
| 3 | 1, 2 | fnmpti 6624 | . . . . 5 ⊢ 𝐹 Fn 𝑍 |
| 4 | uzmptshftfval.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 5 | 4 | zcnd 12578 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 6 | uzmptshftfval.z | . . . . . . . . 9 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 7 | 6 | fvexi 6836 | . . . . . . . 8 ⊢ 𝑍 ∈ V |
| 8 | 7 | mptex 7157 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑍 ↦ 𝐵) ∈ V |
| 9 | 2, 8 | eqeltri 2827 | . . . . . 6 ⊢ 𝐹 ∈ V |
| 10 | 9 | shftfn 14980 | . . . . 5 ⊢ ((𝐹 Fn 𝑍 ∧ 𝑁 ∈ ℂ) → (𝐹 shift 𝑁) Fn {𝑦 ∈ ℂ ∣ (𝑦 − 𝑁) ∈ 𝑍}) |
| 11 | 3, 5, 10 | sylancr 587 | . . . 4 ⊢ (𝜑 → (𝐹 shift 𝑁) Fn {𝑦 ∈ ℂ ∣ (𝑦 − 𝑁) ∈ 𝑍}) |
| 12 | uzmptshftfval.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 13 | shftuz 14976 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → {𝑦 ∈ ℂ ∣ (𝑦 − 𝑁) ∈ (ℤ≥‘𝑀)} = (ℤ≥‘(𝑀 + 𝑁))) | |
| 14 | 4, 12, 13 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → {𝑦 ∈ ℂ ∣ (𝑦 − 𝑁) ∈ (ℤ≥‘𝑀)} = (ℤ≥‘(𝑀 + 𝑁))) |
| 15 | 6 | eleq2i 2823 | . . . . . . 7 ⊢ ((𝑦 − 𝑁) ∈ 𝑍 ↔ (𝑦 − 𝑁) ∈ (ℤ≥‘𝑀)) |
| 16 | 15 | rabbii 3400 | . . . . . 6 ⊢ {𝑦 ∈ ℂ ∣ (𝑦 − 𝑁) ∈ 𝑍} = {𝑦 ∈ ℂ ∣ (𝑦 − 𝑁) ∈ (ℤ≥‘𝑀)} |
| 17 | uzmptshftfval.w | . . . . . 6 ⊢ 𝑊 = (ℤ≥‘(𝑀 + 𝑁)) | |
| 18 | 14, 16, 17 | 3eqtr4g 2791 | . . . . 5 ⊢ (𝜑 → {𝑦 ∈ ℂ ∣ (𝑦 − 𝑁) ∈ 𝑍} = 𝑊) |
| 19 | 18 | fneq2d 6575 | . . . 4 ⊢ (𝜑 → ((𝐹 shift 𝑁) Fn {𝑦 ∈ ℂ ∣ (𝑦 − 𝑁) ∈ 𝑍} ↔ (𝐹 shift 𝑁) Fn 𝑊)) |
| 20 | 11, 19 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐹 shift 𝑁) Fn 𝑊) |
| 21 | dffn5 6880 | . . 3 ⊢ ((𝐹 shift 𝑁) Fn 𝑊 ↔ (𝐹 shift 𝑁) = (𝑦 ∈ 𝑊 ↦ ((𝐹 shift 𝑁)‘𝑦))) | |
| 22 | 20, 21 | sylib 218 | . 2 ⊢ (𝜑 → (𝐹 shift 𝑁) = (𝑦 ∈ 𝑊 ↦ ((𝐹 shift 𝑁)‘𝑦))) |
| 23 | uzssz 12753 | . . . . . . . 8 ⊢ (ℤ≥‘(𝑀 + 𝑁)) ⊆ ℤ | |
| 24 | 17, 23 | eqsstri 3976 | . . . . . . 7 ⊢ 𝑊 ⊆ ℤ |
| 25 | zsscn 12476 | . . . . . . 7 ⊢ ℤ ⊆ ℂ | |
| 26 | 24, 25 | sstri 3939 | . . . . . 6 ⊢ 𝑊 ⊆ ℂ |
| 27 | 26 | sseli 3925 | . . . . 5 ⊢ (𝑦 ∈ 𝑊 → 𝑦 ∈ ℂ) |
| 28 | 9 | shftval 14981 | . . . . 5 ⊢ ((𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦 − 𝑁))) |
| 29 | 5, 27, 28 | syl2an 596 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑊) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦 − 𝑁))) |
| 30 | 17 | eleq2i 2823 | . . . . . . 7 ⊢ (𝑦 ∈ 𝑊 ↔ 𝑦 ∈ (ℤ≥‘(𝑀 + 𝑁))) |
| 31 | 12, 4 | jca 511 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
| 32 | eluzsub 12762 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑦 ∈ (ℤ≥‘(𝑀 + 𝑁))) → (𝑦 − 𝑁) ∈ (ℤ≥‘𝑀)) | |
| 33 | 32 | 3expa 1118 | . . . . . . . 8 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑦 ∈ (ℤ≥‘(𝑀 + 𝑁))) → (𝑦 − 𝑁) ∈ (ℤ≥‘𝑀)) |
| 34 | 31, 33 | sylan 580 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℤ≥‘(𝑀 + 𝑁))) → (𝑦 − 𝑁) ∈ (ℤ≥‘𝑀)) |
| 35 | 30, 34 | sylan2b 594 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑊) → (𝑦 − 𝑁) ∈ (ℤ≥‘𝑀)) |
| 36 | 35, 6 | eleqtrrdi 2842 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑊) → (𝑦 − 𝑁) ∈ 𝑍) |
| 37 | uzmptshftfval.c | . . . . . 6 ⊢ (𝑥 = (𝑦 − 𝑁) → 𝐵 = 𝐶) | |
| 38 | 37, 2, 1 | fvmpt3i 6934 | . . . . 5 ⊢ ((𝑦 − 𝑁) ∈ 𝑍 → (𝐹‘(𝑦 − 𝑁)) = 𝐶) |
| 39 | 36, 38 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑊) → (𝐹‘(𝑦 − 𝑁)) = 𝐶) |
| 40 | 29, 39 | eqtrd 2766 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑊) → ((𝐹 shift 𝑁)‘𝑦) = 𝐶) |
| 41 | 40 | mpteq2dva 5182 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑊 ↦ ((𝐹 shift 𝑁)‘𝑦)) = (𝑦 ∈ 𝑊 ↦ 𝐶)) |
| 42 | 22, 41 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝐹 shift 𝑁) = (𝑦 ∈ 𝑊 ↦ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ↦ cmpt 5170 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 + caddc 11009 − cmin 11344 ℤcz 12468 ℤ≥cuz 12732 shift cshi 14973 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-shft 14974 |
| This theorem is referenced by: dvradcnv2 44450 binomcxplemnotnn0 44459 |
| Copyright terms: Public domain | W3C validator |