Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzmptshftfval Structured version   Visualization version   GIF version

Theorem uzmptshftfval 44308
Description: When 𝐹 is a maps-to function on some set of upper integers 𝑍 that returns a set 𝐵, (𝐹 shift 𝑁) is another maps-to function on the shifted set of upper integers 𝑊. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
uzmptshftfval.f 𝐹 = (𝑥𝑍𝐵)
uzmptshftfval.b 𝐵 ∈ V
uzmptshftfval.c (𝑥 = (𝑦𝑁) → 𝐵 = 𝐶)
uzmptshftfval.z 𝑍 = (ℤ𝑀)
uzmptshftfval.w 𝑊 = (ℤ‘(𝑀 + 𝑁))
uzmptshftfval.m (𝜑𝑀 ∈ ℤ)
uzmptshftfval.n (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
uzmptshftfval (𝜑 → (𝐹 shift 𝑁) = (𝑦𝑊𝐶))
Distinct variable groups:   𝑥,𝑦,𝑁   𝑥,𝑍,𝑦   𝜑,𝑦   𝑥,𝐶   𝑦,𝐹   𝑦,𝑀   𝑦,𝑊
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑦)   𝐹(𝑥)   𝑀(𝑥)   𝑊(𝑥)

Proof of Theorem uzmptshftfval
StepHypRef Expression
1 uzmptshftfval.b . . . . . 6 𝐵 ∈ V
2 uzmptshftfval.f . . . . . 6 𝐹 = (𝑥𝑍𝐵)
31, 2fnmpti 6643 . . . . 5 𝐹 Fn 𝑍
4 uzmptshftfval.n . . . . . 6 (𝜑𝑁 ∈ ℤ)
54zcnd 12615 . . . . 5 (𝜑𝑁 ∈ ℂ)
6 uzmptshftfval.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
76fvexi 6854 . . . . . . . 8 𝑍 ∈ V
87mptex 7179 . . . . . . 7 (𝑥𝑍𝐵) ∈ V
92, 8eqeltri 2824 . . . . . 6 𝐹 ∈ V
109shftfn 15015 . . . . 5 ((𝐹 Fn 𝑍𝑁 ∈ ℂ) → (𝐹 shift 𝑁) Fn {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ 𝑍})
113, 5, 10sylancr 587 . . . 4 (𝜑 → (𝐹 shift 𝑁) Fn {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ 𝑍})
12 uzmptshftfval.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
13 shftuz 15011 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ (ℤ𝑀)} = (ℤ‘(𝑀 + 𝑁)))
144, 12, 13syl2anc 584 . . . . . 6 (𝜑 → {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ (ℤ𝑀)} = (ℤ‘(𝑀 + 𝑁)))
156eleq2i 2820 . . . . . . 7 ((𝑦𝑁) ∈ 𝑍 ↔ (𝑦𝑁) ∈ (ℤ𝑀))
1615rabbii 3408 . . . . . 6 {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ 𝑍} = {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ (ℤ𝑀)}
17 uzmptshftfval.w . . . . . 6 𝑊 = (ℤ‘(𝑀 + 𝑁))
1814, 16, 173eqtr4g 2789 . . . . 5 (𝜑 → {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ 𝑍} = 𝑊)
1918fneq2d 6594 . . . 4 (𝜑 → ((𝐹 shift 𝑁) Fn {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ 𝑍} ↔ (𝐹 shift 𝑁) Fn 𝑊))
2011, 19mpbid 232 . . 3 (𝜑 → (𝐹 shift 𝑁) Fn 𝑊)
21 dffn5 6901 . . 3 ((𝐹 shift 𝑁) Fn 𝑊 ↔ (𝐹 shift 𝑁) = (𝑦𝑊 ↦ ((𝐹 shift 𝑁)‘𝑦)))
2220, 21sylib 218 . 2 (𝜑 → (𝐹 shift 𝑁) = (𝑦𝑊 ↦ ((𝐹 shift 𝑁)‘𝑦)))
23 uzssz 12790 . . . . . . . 8 (ℤ‘(𝑀 + 𝑁)) ⊆ ℤ
2417, 23eqsstri 3990 . . . . . . 7 𝑊 ⊆ ℤ
25 zsscn 12513 . . . . . . 7 ℤ ⊆ ℂ
2624, 25sstri 3953 . . . . . 6 𝑊 ⊆ ℂ
2726sseli 3939 . . . . 5 (𝑦𝑊𝑦 ∈ ℂ)
289shftval 15016 . . . . 5 ((𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦𝑁)))
295, 27, 28syl2an 596 . . . 4 ((𝜑𝑦𝑊) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦𝑁)))
3017eleq2i 2820 . . . . . . 7 (𝑦𝑊𝑦 ∈ (ℤ‘(𝑀 + 𝑁)))
3112, 4jca 511 . . . . . . . 8 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
32 eluzsub 12799 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑦 ∈ (ℤ‘(𝑀 + 𝑁))) → (𝑦𝑁) ∈ (ℤ𝑀))
33323expa 1118 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑦 ∈ (ℤ‘(𝑀 + 𝑁))) → (𝑦𝑁) ∈ (ℤ𝑀))
3431, 33sylan 580 . . . . . . 7 ((𝜑𝑦 ∈ (ℤ‘(𝑀 + 𝑁))) → (𝑦𝑁) ∈ (ℤ𝑀))
3530, 34sylan2b 594 . . . . . 6 ((𝜑𝑦𝑊) → (𝑦𝑁) ∈ (ℤ𝑀))
3635, 6eleqtrrdi 2839 . . . . 5 ((𝜑𝑦𝑊) → (𝑦𝑁) ∈ 𝑍)
37 uzmptshftfval.c . . . . . 6 (𝑥 = (𝑦𝑁) → 𝐵 = 𝐶)
3837, 2, 1fvmpt3i 6955 . . . . 5 ((𝑦𝑁) ∈ 𝑍 → (𝐹‘(𝑦𝑁)) = 𝐶)
3936, 38syl 17 . . . 4 ((𝜑𝑦𝑊) → (𝐹‘(𝑦𝑁)) = 𝐶)
4029, 39eqtrd 2764 . . 3 ((𝜑𝑦𝑊) → ((𝐹 shift 𝑁)‘𝑦) = 𝐶)
4140mpteq2dva 5195 . 2 (𝜑 → (𝑦𝑊 ↦ ((𝐹 shift 𝑁)‘𝑦)) = (𝑦𝑊𝐶))
4222, 41eqtrd 2764 1 (𝜑 → (𝐹 shift 𝑁) = (𝑦𝑊𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3402  Vcvv 3444  cmpt 5183   Fn wfn 6494  cfv 6499  (class class class)co 7369  cc 11042   + caddc 11047  cmin 11381  cz 12505  cuz 12769   shift cshi 15008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-shft 15009
This theorem is referenced by:  dvradcnv2  44309  binomcxplemnotnn0  44318
  Copyright terms: Public domain W3C validator