| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uzmptshftfval | Structured version Visualization version GIF version | ||
| Description: When 𝐹 is a maps-to function on some set of upper integers 𝑍 that returns a set 𝐵, (𝐹 shift 𝑁) is another maps-to function on the shifted set of upper integers 𝑊. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| Ref | Expression |
|---|---|
| uzmptshftfval.f | ⊢ 𝐹 = (𝑥 ∈ 𝑍 ↦ 𝐵) |
| uzmptshftfval.b | ⊢ 𝐵 ∈ V |
| uzmptshftfval.c | ⊢ (𝑥 = (𝑦 − 𝑁) → 𝐵 = 𝐶) |
| uzmptshftfval.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| uzmptshftfval.w | ⊢ 𝑊 = (ℤ≥‘(𝑀 + 𝑁)) |
| uzmptshftfval.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| uzmptshftfval.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| Ref | Expression |
|---|---|
| uzmptshftfval | ⊢ (𝜑 → (𝐹 shift 𝑁) = (𝑦 ∈ 𝑊 ↦ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzmptshftfval.b | . . . . . 6 ⊢ 𝐵 ∈ V | |
| 2 | uzmptshftfval.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝑍 ↦ 𝐵) | |
| 3 | 1, 2 | fnmpti 6643 | . . . . 5 ⊢ 𝐹 Fn 𝑍 |
| 4 | uzmptshftfval.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 5 | 4 | zcnd 12615 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 6 | uzmptshftfval.z | . . . . . . . . 9 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 7 | 6 | fvexi 6854 | . . . . . . . 8 ⊢ 𝑍 ∈ V |
| 8 | 7 | mptex 7179 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑍 ↦ 𝐵) ∈ V |
| 9 | 2, 8 | eqeltri 2824 | . . . . . 6 ⊢ 𝐹 ∈ V |
| 10 | 9 | shftfn 15015 | . . . . 5 ⊢ ((𝐹 Fn 𝑍 ∧ 𝑁 ∈ ℂ) → (𝐹 shift 𝑁) Fn {𝑦 ∈ ℂ ∣ (𝑦 − 𝑁) ∈ 𝑍}) |
| 11 | 3, 5, 10 | sylancr 587 | . . . 4 ⊢ (𝜑 → (𝐹 shift 𝑁) Fn {𝑦 ∈ ℂ ∣ (𝑦 − 𝑁) ∈ 𝑍}) |
| 12 | uzmptshftfval.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 13 | shftuz 15011 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → {𝑦 ∈ ℂ ∣ (𝑦 − 𝑁) ∈ (ℤ≥‘𝑀)} = (ℤ≥‘(𝑀 + 𝑁))) | |
| 14 | 4, 12, 13 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → {𝑦 ∈ ℂ ∣ (𝑦 − 𝑁) ∈ (ℤ≥‘𝑀)} = (ℤ≥‘(𝑀 + 𝑁))) |
| 15 | 6 | eleq2i 2820 | . . . . . . 7 ⊢ ((𝑦 − 𝑁) ∈ 𝑍 ↔ (𝑦 − 𝑁) ∈ (ℤ≥‘𝑀)) |
| 16 | 15 | rabbii 3408 | . . . . . 6 ⊢ {𝑦 ∈ ℂ ∣ (𝑦 − 𝑁) ∈ 𝑍} = {𝑦 ∈ ℂ ∣ (𝑦 − 𝑁) ∈ (ℤ≥‘𝑀)} |
| 17 | uzmptshftfval.w | . . . . . 6 ⊢ 𝑊 = (ℤ≥‘(𝑀 + 𝑁)) | |
| 18 | 14, 16, 17 | 3eqtr4g 2789 | . . . . 5 ⊢ (𝜑 → {𝑦 ∈ ℂ ∣ (𝑦 − 𝑁) ∈ 𝑍} = 𝑊) |
| 19 | 18 | fneq2d 6594 | . . . 4 ⊢ (𝜑 → ((𝐹 shift 𝑁) Fn {𝑦 ∈ ℂ ∣ (𝑦 − 𝑁) ∈ 𝑍} ↔ (𝐹 shift 𝑁) Fn 𝑊)) |
| 20 | 11, 19 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐹 shift 𝑁) Fn 𝑊) |
| 21 | dffn5 6901 | . . 3 ⊢ ((𝐹 shift 𝑁) Fn 𝑊 ↔ (𝐹 shift 𝑁) = (𝑦 ∈ 𝑊 ↦ ((𝐹 shift 𝑁)‘𝑦))) | |
| 22 | 20, 21 | sylib 218 | . 2 ⊢ (𝜑 → (𝐹 shift 𝑁) = (𝑦 ∈ 𝑊 ↦ ((𝐹 shift 𝑁)‘𝑦))) |
| 23 | uzssz 12790 | . . . . . . . 8 ⊢ (ℤ≥‘(𝑀 + 𝑁)) ⊆ ℤ | |
| 24 | 17, 23 | eqsstri 3990 | . . . . . . 7 ⊢ 𝑊 ⊆ ℤ |
| 25 | zsscn 12513 | . . . . . . 7 ⊢ ℤ ⊆ ℂ | |
| 26 | 24, 25 | sstri 3953 | . . . . . 6 ⊢ 𝑊 ⊆ ℂ |
| 27 | 26 | sseli 3939 | . . . . 5 ⊢ (𝑦 ∈ 𝑊 → 𝑦 ∈ ℂ) |
| 28 | 9 | shftval 15016 | . . . . 5 ⊢ ((𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦 − 𝑁))) |
| 29 | 5, 27, 28 | syl2an 596 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑊) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦 − 𝑁))) |
| 30 | 17 | eleq2i 2820 | . . . . . . 7 ⊢ (𝑦 ∈ 𝑊 ↔ 𝑦 ∈ (ℤ≥‘(𝑀 + 𝑁))) |
| 31 | 12, 4 | jca 511 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
| 32 | eluzsub 12799 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑦 ∈ (ℤ≥‘(𝑀 + 𝑁))) → (𝑦 − 𝑁) ∈ (ℤ≥‘𝑀)) | |
| 33 | 32 | 3expa 1118 | . . . . . . . 8 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑦 ∈ (ℤ≥‘(𝑀 + 𝑁))) → (𝑦 − 𝑁) ∈ (ℤ≥‘𝑀)) |
| 34 | 31, 33 | sylan 580 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ (ℤ≥‘(𝑀 + 𝑁))) → (𝑦 − 𝑁) ∈ (ℤ≥‘𝑀)) |
| 35 | 30, 34 | sylan2b 594 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑊) → (𝑦 − 𝑁) ∈ (ℤ≥‘𝑀)) |
| 36 | 35, 6 | eleqtrrdi 2839 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑊) → (𝑦 − 𝑁) ∈ 𝑍) |
| 37 | uzmptshftfval.c | . . . . . 6 ⊢ (𝑥 = (𝑦 − 𝑁) → 𝐵 = 𝐶) | |
| 38 | 37, 2, 1 | fvmpt3i 6955 | . . . . 5 ⊢ ((𝑦 − 𝑁) ∈ 𝑍 → (𝐹‘(𝑦 − 𝑁)) = 𝐶) |
| 39 | 36, 38 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑊) → (𝐹‘(𝑦 − 𝑁)) = 𝐶) |
| 40 | 29, 39 | eqtrd 2764 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑊) → ((𝐹 shift 𝑁)‘𝑦) = 𝐶) |
| 41 | 40 | mpteq2dva 5195 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝑊 ↦ ((𝐹 shift 𝑁)‘𝑦)) = (𝑦 ∈ 𝑊 ↦ 𝐶)) |
| 42 | 22, 41 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝐹 shift 𝑁) = (𝑦 ∈ 𝑊 ↦ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3402 Vcvv 3444 ↦ cmpt 5183 Fn wfn 6494 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 + caddc 11047 − cmin 11381 ℤcz 12505 ℤ≥cuz 12769 shift cshi 15008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-shft 15009 |
| This theorem is referenced by: dvradcnv2 44309 binomcxplemnotnn0 44318 |
| Copyright terms: Public domain | W3C validator |