Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzmptshftfval Structured version   Visualization version   GIF version

Theorem uzmptshftfval 44335
Description: When 𝐹 is a maps-to function on some set of upper integers 𝑍 that returns a set 𝐵, (𝐹 shift 𝑁) is another maps-to function on the shifted set of upper integers 𝑊. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
uzmptshftfval.f 𝐹 = (𝑥𝑍𝐵)
uzmptshftfval.b 𝐵 ∈ V
uzmptshftfval.c (𝑥 = (𝑦𝑁) → 𝐵 = 𝐶)
uzmptshftfval.z 𝑍 = (ℤ𝑀)
uzmptshftfval.w 𝑊 = (ℤ‘(𝑀 + 𝑁))
uzmptshftfval.m (𝜑𝑀 ∈ ℤ)
uzmptshftfval.n (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
uzmptshftfval (𝜑 → (𝐹 shift 𝑁) = (𝑦𝑊𝐶))
Distinct variable groups:   𝑥,𝑦,𝑁   𝑥,𝑍,𝑦   𝜑,𝑦   𝑥,𝐶   𝑦,𝐹   𝑦,𝑀   𝑦,𝑊
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑦)   𝐹(𝑥)   𝑀(𝑥)   𝑊(𝑥)

Proof of Theorem uzmptshftfval
StepHypRef Expression
1 uzmptshftfval.b . . . . . 6 𝐵 ∈ V
2 uzmptshftfval.f . . . . . 6 𝐹 = (𝑥𝑍𝐵)
31, 2fnmpti 6661 . . . . 5 𝐹 Fn 𝑍
4 uzmptshftfval.n . . . . . 6 (𝜑𝑁 ∈ ℤ)
54zcnd 12639 . . . . 5 (𝜑𝑁 ∈ ℂ)
6 uzmptshftfval.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
76fvexi 6872 . . . . . . . 8 𝑍 ∈ V
87mptex 7197 . . . . . . 7 (𝑥𝑍𝐵) ∈ V
92, 8eqeltri 2824 . . . . . 6 𝐹 ∈ V
109shftfn 15039 . . . . 5 ((𝐹 Fn 𝑍𝑁 ∈ ℂ) → (𝐹 shift 𝑁) Fn {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ 𝑍})
113, 5, 10sylancr 587 . . . 4 (𝜑 → (𝐹 shift 𝑁) Fn {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ 𝑍})
12 uzmptshftfval.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
13 shftuz 15035 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ (ℤ𝑀)} = (ℤ‘(𝑀 + 𝑁)))
144, 12, 13syl2anc 584 . . . . . 6 (𝜑 → {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ (ℤ𝑀)} = (ℤ‘(𝑀 + 𝑁)))
156eleq2i 2820 . . . . . . 7 ((𝑦𝑁) ∈ 𝑍 ↔ (𝑦𝑁) ∈ (ℤ𝑀))
1615rabbii 3411 . . . . . 6 {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ 𝑍} = {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ (ℤ𝑀)}
17 uzmptshftfval.w . . . . . 6 𝑊 = (ℤ‘(𝑀 + 𝑁))
1814, 16, 173eqtr4g 2789 . . . . 5 (𝜑 → {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ 𝑍} = 𝑊)
1918fneq2d 6612 . . . 4 (𝜑 → ((𝐹 shift 𝑁) Fn {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ 𝑍} ↔ (𝐹 shift 𝑁) Fn 𝑊))
2011, 19mpbid 232 . . 3 (𝜑 → (𝐹 shift 𝑁) Fn 𝑊)
21 dffn5 6919 . . 3 ((𝐹 shift 𝑁) Fn 𝑊 ↔ (𝐹 shift 𝑁) = (𝑦𝑊 ↦ ((𝐹 shift 𝑁)‘𝑦)))
2220, 21sylib 218 . 2 (𝜑 → (𝐹 shift 𝑁) = (𝑦𝑊 ↦ ((𝐹 shift 𝑁)‘𝑦)))
23 uzssz 12814 . . . . . . . 8 (ℤ‘(𝑀 + 𝑁)) ⊆ ℤ
2417, 23eqsstri 3993 . . . . . . 7 𝑊 ⊆ ℤ
25 zsscn 12537 . . . . . . 7 ℤ ⊆ ℂ
2624, 25sstri 3956 . . . . . 6 𝑊 ⊆ ℂ
2726sseli 3942 . . . . 5 (𝑦𝑊𝑦 ∈ ℂ)
289shftval 15040 . . . . 5 ((𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦𝑁)))
295, 27, 28syl2an 596 . . . 4 ((𝜑𝑦𝑊) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦𝑁)))
3017eleq2i 2820 . . . . . . 7 (𝑦𝑊𝑦 ∈ (ℤ‘(𝑀 + 𝑁)))
3112, 4jca 511 . . . . . . . 8 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
32 eluzsub 12823 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑦 ∈ (ℤ‘(𝑀 + 𝑁))) → (𝑦𝑁) ∈ (ℤ𝑀))
33323expa 1118 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑦 ∈ (ℤ‘(𝑀 + 𝑁))) → (𝑦𝑁) ∈ (ℤ𝑀))
3431, 33sylan 580 . . . . . . 7 ((𝜑𝑦 ∈ (ℤ‘(𝑀 + 𝑁))) → (𝑦𝑁) ∈ (ℤ𝑀))
3530, 34sylan2b 594 . . . . . 6 ((𝜑𝑦𝑊) → (𝑦𝑁) ∈ (ℤ𝑀))
3635, 6eleqtrrdi 2839 . . . . 5 ((𝜑𝑦𝑊) → (𝑦𝑁) ∈ 𝑍)
37 uzmptshftfval.c . . . . . 6 (𝑥 = (𝑦𝑁) → 𝐵 = 𝐶)
3837, 2, 1fvmpt3i 6973 . . . . 5 ((𝑦𝑁) ∈ 𝑍 → (𝐹‘(𝑦𝑁)) = 𝐶)
3936, 38syl 17 . . . 4 ((𝜑𝑦𝑊) → (𝐹‘(𝑦𝑁)) = 𝐶)
4029, 39eqtrd 2764 . . 3 ((𝜑𝑦𝑊) → ((𝐹 shift 𝑁)‘𝑦) = 𝐶)
4140mpteq2dva 5200 . 2 (𝜑 → (𝑦𝑊 ↦ ((𝐹 shift 𝑁)‘𝑦)) = (𝑦𝑊𝐶))
4222, 41eqtrd 2764 1 (𝜑 → (𝐹 shift 𝑁) = (𝑦𝑊𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  cmpt 5188   Fn wfn 6506  cfv 6511  (class class class)co 7387  cc 11066   + caddc 11071  cmin 11405  cz 12529  cuz 12793   shift cshi 15032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-shft 15033
This theorem is referenced by:  dvradcnv2  44336  binomcxplemnotnn0  44345
  Copyright terms: Public domain W3C validator