Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzmptshftfval Structured version   Visualization version   GIF version

Theorem uzmptshftfval 44318
Description: When 𝐹 is a maps-to function on some set of upper integers 𝑍 that returns a set 𝐵, (𝐹 shift 𝑁) is another maps-to function on the shifted set of upper integers 𝑊. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
uzmptshftfval.f 𝐹 = (𝑥𝑍𝐵)
uzmptshftfval.b 𝐵 ∈ V
uzmptshftfval.c (𝑥 = (𝑦𝑁) → 𝐵 = 𝐶)
uzmptshftfval.z 𝑍 = (ℤ𝑀)
uzmptshftfval.w 𝑊 = (ℤ‘(𝑀 + 𝑁))
uzmptshftfval.m (𝜑𝑀 ∈ ℤ)
uzmptshftfval.n (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
uzmptshftfval (𝜑 → (𝐹 shift 𝑁) = (𝑦𝑊𝐶))
Distinct variable groups:   𝑥,𝑦,𝑁   𝑥,𝑍,𝑦   𝜑,𝑦   𝑥,𝐶   𝑦,𝐹   𝑦,𝑀   𝑦,𝑊
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑦)   𝐹(𝑥)   𝑀(𝑥)   𝑊(𝑥)

Proof of Theorem uzmptshftfval
StepHypRef Expression
1 uzmptshftfval.b . . . . . 6 𝐵 ∈ V
2 uzmptshftfval.f . . . . . 6 𝐹 = (𝑥𝑍𝐵)
31, 2fnmpti 6680 . . . . 5 𝐹 Fn 𝑍
4 uzmptshftfval.n . . . . . 6 (𝜑𝑁 ∈ ℤ)
54zcnd 12696 . . . . 5 (𝜑𝑁 ∈ ℂ)
6 uzmptshftfval.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
76fvexi 6889 . . . . . . . 8 𝑍 ∈ V
87mptex 7214 . . . . . . 7 (𝑥𝑍𝐵) ∈ V
92, 8eqeltri 2830 . . . . . 6 𝐹 ∈ V
109shftfn 15090 . . . . 5 ((𝐹 Fn 𝑍𝑁 ∈ ℂ) → (𝐹 shift 𝑁) Fn {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ 𝑍})
113, 5, 10sylancr 587 . . . 4 (𝜑 → (𝐹 shift 𝑁) Fn {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ 𝑍})
12 uzmptshftfval.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
13 shftuz 15086 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ (ℤ𝑀)} = (ℤ‘(𝑀 + 𝑁)))
144, 12, 13syl2anc 584 . . . . . 6 (𝜑 → {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ (ℤ𝑀)} = (ℤ‘(𝑀 + 𝑁)))
156eleq2i 2826 . . . . . . 7 ((𝑦𝑁) ∈ 𝑍 ↔ (𝑦𝑁) ∈ (ℤ𝑀))
1615rabbii 3421 . . . . . 6 {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ 𝑍} = {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ (ℤ𝑀)}
17 uzmptshftfval.w . . . . . 6 𝑊 = (ℤ‘(𝑀 + 𝑁))
1814, 16, 173eqtr4g 2795 . . . . 5 (𝜑 → {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ 𝑍} = 𝑊)
1918fneq2d 6631 . . . 4 (𝜑 → ((𝐹 shift 𝑁) Fn {𝑦 ∈ ℂ ∣ (𝑦𝑁) ∈ 𝑍} ↔ (𝐹 shift 𝑁) Fn 𝑊))
2011, 19mpbid 232 . . 3 (𝜑 → (𝐹 shift 𝑁) Fn 𝑊)
21 dffn5 6936 . . 3 ((𝐹 shift 𝑁) Fn 𝑊 ↔ (𝐹 shift 𝑁) = (𝑦𝑊 ↦ ((𝐹 shift 𝑁)‘𝑦)))
2220, 21sylib 218 . 2 (𝜑 → (𝐹 shift 𝑁) = (𝑦𝑊 ↦ ((𝐹 shift 𝑁)‘𝑦)))
23 uzssz 12871 . . . . . . . 8 (ℤ‘(𝑀 + 𝑁)) ⊆ ℤ
2417, 23eqsstri 4005 . . . . . . 7 𝑊 ⊆ ℤ
25 zsscn 12594 . . . . . . 7 ℤ ⊆ ℂ
2624, 25sstri 3968 . . . . . 6 𝑊 ⊆ ℂ
2726sseli 3954 . . . . 5 (𝑦𝑊𝑦 ∈ ℂ)
289shftval 15091 . . . . 5 ((𝑁 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦𝑁)))
295, 27, 28syl2an 596 . . . 4 ((𝜑𝑦𝑊) → ((𝐹 shift 𝑁)‘𝑦) = (𝐹‘(𝑦𝑁)))
3017eleq2i 2826 . . . . . . 7 (𝑦𝑊𝑦 ∈ (ℤ‘(𝑀 + 𝑁)))
3112, 4jca 511 . . . . . . . 8 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
32 eluzsub 12880 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑦 ∈ (ℤ‘(𝑀 + 𝑁))) → (𝑦𝑁) ∈ (ℤ𝑀))
33323expa 1118 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑦 ∈ (ℤ‘(𝑀 + 𝑁))) → (𝑦𝑁) ∈ (ℤ𝑀))
3431, 33sylan 580 . . . . . . 7 ((𝜑𝑦 ∈ (ℤ‘(𝑀 + 𝑁))) → (𝑦𝑁) ∈ (ℤ𝑀))
3530, 34sylan2b 594 . . . . . 6 ((𝜑𝑦𝑊) → (𝑦𝑁) ∈ (ℤ𝑀))
3635, 6eleqtrrdi 2845 . . . . 5 ((𝜑𝑦𝑊) → (𝑦𝑁) ∈ 𝑍)
37 uzmptshftfval.c . . . . . 6 (𝑥 = (𝑦𝑁) → 𝐵 = 𝐶)
3837, 2, 1fvmpt3i 6990 . . . . 5 ((𝑦𝑁) ∈ 𝑍 → (𝐹‘(𝑦𝑁)) = 𝐶)
3936, 38syl 17 . . . 4 ((𝜑𝑦𝑊) → (𝐹‘(𝑦𝑁)) = 𝐶)
4029, 39eqtrd 2770 . . 3 ((𝜑𝑦𝑊) → ((𝐹 shift 𝑁)‘𝑦) = 𝐶)
4140mpteq2dva 5214 . 2 (𝜑 → (𝑦𝑊 ↦ ((𝐹 shift 𝑁)‘𝑦)) = (𝑦𝑊𝐶))
4222, 41eqtrd 2770 1 (𝜑 → (𝐹 shift 𝑁) = (𝑦𝑊𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459  cmpt 5201   Fn wfn 6525  cfv 6530  (class class class)co 7403  cc 11125   + caddc 11130  cmin 11464  cz 12586  cuz 12850   shift cshi 15083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-n0 12500  df-z 12587  df-uz 12851  df-shft 15084
This theorem is referenced by:  dvradcnv2  44319  binomcxplemnotnn0  44328
  Copyright terms: Public domain W3C validator