| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmclimf | Structured version Visualization version GIF version | ||
| Description: Relate a limit on the metric space of complex numbers to our complex number limit notation. (Contributed by NM, 24-Jul-2007.) (Revised by Mario Carneiro, 1-May-2014.) |
| Ref | Expression |
|---|---|
| lmclim.2 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| lmclim.3 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| Ref | Expression |
|---|---|
| lmclimf | ⊢ ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℂ) → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹 ⇝ 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℂ) → 𝐹:𝑍⟶ℂ) | |
| 2 | lmclim.3 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 3 | uzssz 12871 | . . . . 5 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
| 4 | zsscn 12594 | . . . . 5 ⊢ ℤ ⊆ ℂ | |
| 5 | 3, 4 | sstri 3968 | . . . 4 ⊢ (ℤ≥‘𝑀) ⊆ ℂ |
| 6 | 2, 5 | eqsstri 4005 | . . 3 ⊢ 𝑍 ⊆ ℂ |
| 7 | cnex 11208 | . . . 4 ⊢ ℂ ∈ V | |
| 8 | elpm2r 8857 | . . . 4 ⊢ (((ℂ ∈ V ∧ ℂ ∈ V) ∧ (𝐹:𝑍⟶ℂ ∧ 𝑍 ⊆ ℂ)) → 𝐹 ∈ (ℂ ↑pm ℂ)) | |
| 9 | 7, 7, 8 | mpanl12 702 | . . 3 ⊢ ((𝐹:𝑍⟶ℂ ∧ 𝑍 ⊆ ℂ) → 𝐹 ∈ (ℂ ↑pm ℂ)) |
| 10 | 1, 6, 9 | sylancl 586 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℂ) → 𝐹 ∈ (ℂ ↑pm ℂ)) |
| 11 | fdm 6714 | . . . 4 ⊢ (𝐹:𝑍⟶ℂ → dom 𝐹 = 𝑍) | |
| 12 | eqimss2 4018 | . . . 4 ⊢ (dom 𝐹 = 𝑍 → 𝑍 ⊆ dom 𝐹) | |
| 13 | 1, 11, 12 | 3syl 18 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℂ) → 𝑍 ⊆ dom 𝐹) |
| 14 | lmclim.2 | . . . 4 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 15 | 14, 2 | lmclim 25253 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝐹 ⇝ 𝑃))) |
| 16 | 13, 15 | syldan 591 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℂ) → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝐹 ⇝ 𝑃))) |
| 17 | 10, 16 | mpbirand 707 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℂ) → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹 ⇝ 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 class class class wbr 5119 dom cdm 5654 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 ↑pm cpm 8839 ℂcc 11125 ℤcz 12586 ℤ≥cuz 12850 ⇝ cli 15498 TopOpenctopn 17433 ℂfldccnfld 21313 ⇝𝑡clm 23162 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-map 8840 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9452 df-inf 9453 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-q 12963 df-rp 13007 df-xneg 13126 df-xadd 13127 df-xmul 13128 df-fz 13523 df-seq 14018 df-exp 14078 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-clim 15502 df-struct 17164 df-slot 17199 df-ndx 17211 df-base 17227 df-plusg 17282 df-mulr 17283 df-starv 17284 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-rest 17434 df-topn 17435 df-topgen 17455 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-cnfld 21314 df-top 22830 df-topon 22847 df-bases 22882 df-lm 23165 |
| This theorem is referenced by: lmlim 33924 climreeq 45590 |
| Copyright terms: Public domain | W3C validator |