![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmclimf | Structured version Visualization version GIF version |
Description: Relate a limit on the metric space of complex numbers to our complex number limit notation. (Contributed by NM, 24-Jul-2007.) (Revised by Mario Carneiro, 1-May-2014.) |
Ref | Expression |
---|---|
lmclim.2 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
lmclim.3 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
lmclimf | ⊢ ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℂ) → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹 ⇝ 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 477 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℂ) → 𝐹:𝑍⟶ℂ) | |
2 | lmclim.3 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | uzssz 12071 | . . . . 5 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
4 | zsscn 11794 | . . . . 5 ⊢ ℤ ⊆ ℂ | |
5 | 3, 4 | sstri 3863 | . . . 4 ⊢ (ℤ≥‘𝑀) ⊆ ℂ |
6 | 2, 5 | eqsstri 3887 | . . 3 ⊢ 𝑍 ⊆ ℂ |
7 | cnex 10408 | . . . 4 ⊢ ℂ ∈ V | |
8 | elpm2r 8216 | . . . 4 ⊢ (((ℂ ∈ V ∧ ℂ ∈ V) ∧ (𝐹:𝑍⟶ℂ ∧ 𝑍 ⊆ ℂ)) → 𝐹 ∈ (ℂ ↑pm ℂ)) | |
9 | 7, 7, 8 | mpanl12 689 | . . 3 ⊢ ((𝐹:𝑍⟶ℂ ∧ 𝑍 ⊆ ℂ) → 𝐹 ∈ (ℂ ↑pm ℂ)) |
10 | 1, 6, 9 | sylancl 577 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℂ) → 𝐹 ∈ (ℂ ↑pm ℂ)) |
11 | fdm 6346 | . . . 4 ⊢ (𝐹:𝑍⟶ℂ → dom 𝐹 = 𝑍) | |
12 | eqimss2 3910 | . . . 4 ⊢ (dom 𝐹 = 𝑍 → 𝑍 ⊆ dom 𝐹) | |
13 | 1, 11, 12 | 3syl 18 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℂ) → 𝑍 ⊆ dom 𝐹) |
14 | lmclim.2 | . . . 4 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
15 | 14, 2 | lmclim 23599 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑍 ⊆ dom 𝐹) → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝐹 ⇝ 𝑃))) |
16 | 13, 15 | syldan 582 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℂ) → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝐹 ⇝ 𝑃))) |
17 | 10, 16 | mpbirand 694 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℂ) → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹 ⇝ 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2048 Vcvv 3409 ⊆ wss 3825 class class class wbr 4923 dom cdm 5400 ⟶wf 6178 ‘cfv 6182 (class class class)co 6970 ↑pm cpm 8199 ℂcc 10325 ℤcz 11786 ℤ≥cuz 12051 ⇝ cli 14692 TopOpenctopn 16541 ℂfldccnfld 20237 ⇝𝑡clm 21528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 ax-pre-sup 10405 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-1o 7897 df-oadd 7901 df-er 8081 df-map 8200 df-pm 8201 df-en 8299 df-dom 8300 df-sdom 8301 df-fin 8302 df-sup 8693 df-inf 8694 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-div 11091 df-nn 11432 df-2 11496 df-3 11497 df-4 11498 df-5 11499 df-6 11500 df-7 11501 df-8 11502 df-9 11503 df-n0 11701 df-z 11787 df-dec 11905 df-uz 12052 df-q 12156 df-rp 12198 df-xneg 12317 df-xadd 12318 df-xmul 12319 df-fz 12702 df-seq 13178 df-exp 13238 df-cj 14309 df-re 14310 df-im 14311 df-sqrt 14445 df-abs 14446 df-clim 14696 df-struct 16331 df-ndx 16332 df-slot 16333 df-base 16335 df-plusg 16424 df-mulr 16425 df-starv 16426 df-tset 16430 df-ple 16431 df-ds 16433 df-unif 16434 df-rest 16542 df-topn 16543 df-topgen 16563 df-psmet 20229 df-xmet 20230 df-met 20231 df-bl 20232 df-mopn 20233 df-cnfld 20238 df-top 21196 df-topon 21213 df-bases 21248 df-lm 21531 |
This theorem is referenced by: lmlim 30791 climreeq 41271 |
Copyright terms: Public domain | W3C validator |