| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zexpcl | Structured version Visualization version GIF version | ||
| Description: Closure of exponentiation of integers. (Contributed by NM, 16-Dec-2005.) |
| Ref | Expression |
|---|---|
| zexpcl | ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zsscn 12471 | . 2 ⊢ ℤ ⊆ ℂ | |
| 2 | zmulcl 12516 | . 2 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ) | |
| 3 | 1z 12497 | . 2 ⊢ 1 ∈ ℤ | |
| 4 | 1, 2, 3 | expcllem 13974 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 (class class class)co 7341 ℕ0cn0 12376 ℤcz 12463 ↑cexp 13963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-seq 13904 df-exp 13964 |
| This theorem is referenced by: zexpcld 13989 zsqcl 14031 modexp 14140 climcndslem1 15751 iddvdsexp 16185 dvdsexp2im 16233 dvdsexp 16234 3dvds 16237 dvdsexpim 16461 zexpgcd 16471 prmdvdsexp 16621 rpexp 16628 rpexp12i 16630 numdenexp 16666 phiprmpw 16682 eulerthlem2 16688 fermltl 16690 prmdiv 16691 prmdiveq 16692 odzcllem 16699 odzdvds 16702 odzphi 16703 vfermltlALT 16709 powm2modprm 16710 pcneg 16781 pcprmpw 16790 prmpwdvds 16811 pockthlem 16812 dyaddisjlem 25518 aalioulem1 26262 aaliou3lem6 26278 muf 27072 dvdsppwf1o 27118 mersenne 27160 lgslem1 27230 lgsval2lem 27240 lgsvalmod 27249 lgsmod 27256 lgsdirprm 27264 lgsne0 27268 lgsqrlem1 27279 gausslemma2dlem7 27306 gausslemma2d 27307 lgseisenlem2 27309 lgseisenlem4 27311 m1lgs 27321 2sqreultlem 27380 2sqreunnltlem 27383 znfermltl 33323 mdetlap 33837 oddpwdc 34359 nn0prpwlem 36356 nn0prpw 36357 knoppndvlem2 36547 aks4d1p3 42111 aks4d1p6 42114 aks6d1c2p2 42152 jm2.18 43021 jm2.22 43028 jm2.23 43029 jm2.20nn 43030 inductionexd 44188 etransclem3 46275 etransclem7 46279 etransclem10 46282 etransclem24 46296 etransclem27 46299 etransclem35 46307 2pwp1prm 47620 sfprmdvdsmersenne 47634 lighneallem4b 47640 lighneallem4 47641 proththd 47645 41prothprmlem2 47649 nnpw2evenALTV 47733 fpprmod 47758 fppr2odd 47762 dfwppr 47769 fpprwppr 47770 fpprwpprb 47771 pw2m1lepw2m1 48552 nnpw2blenfzo 48613 dignn0fr 48633 digexp 48639 dignn0flhalflem1 48647 |
| Copyright terms: Public domain | W3C validator |