| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zexpcl | Structured version Visualization version GIF version | ||
| Description: Closure of exponentiation of integers. (Contributed by NM, 16-Dec-2005.) |
| Ref | Expression |
|---|---|
| zexpcl | ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zsscn 12513 | . 2 ⊢ ℤ ⊆ ℂ | |
| 2 | zmulcl 12558 | . 2 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ) | |
| 3 | 1z 12539 | . 2 ⊢ 1 ∈ ℤ | |
| 4 | 1, 2, 3 | expcllem 14013 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7369 ℕ0cn0 12418 ℤcz 12505 ↑cexp 14002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-seq 13943 df-exp 14003 |
| This theorem is referenced by: zexpcld 14028 zsqcl 14070 modexp 14179 climcndslem1 15791 iddvdsexp 16225 dvdsexp2im 16273 dvdsexp 16274 3dvds 16277 dvdsexpim 16501 zexpgcd 16511 prmdvdsexp 16661 rpexp 16668 rpexp12i 16670 numdenexp 16706 phiprmpw 16722 eulerthlem2 16728 fermltl 16730 prmdiv 16731 prmdiveq 16732 odzcllem 16739 odzdvds 16742 odzphi 16743 vfermltlALT 16749 powm2modprm 16750 pcneg 16821 pcprmpw 16830 prmpwdvds 16851 pockthlem 16852 dyaddisjlem 25472 aalioulem1 26216 aaliou3lem6 26232 muf 27026 dvdsppwf1o 27072 mersenne 27114 lgslem1 27184 lgsval2lem 27194 lgsvalmod 27203 lgsmod 27210 lgsdirprm 27218 lgsne0 27222 lgsqrlem1 27233 gausslemma2dlem7 27260 gausslemma2d 27261 lgseisenlem2 27263 lgseisenlem4 27265 m1lgs 27275 2sqreultlem 27334 2sqreunnltlem 27337 znfermltl 33310 mdetlap 33795 oddpwdc 34318 nn0prpwlem 36283 nn0prpw 36284 knoppndvlem2 36474 aks4d1p3 42039 aks4d1p6 42042 aks6d1c2p2 42080 jm2.18 42950 jm2.22 42957 jm2.23 42958 jm2.20nn 42959 inductionexd 44117 etransclem3 46208 etransclem7 46212 etransclem10 46215 etransclem24 46229 etransclem27 46232 etransclem35 46240 2pwp1prm 47563 sfprmdvdsmersenne 47577 lighneallem4b 47583 lighneallem4 47584 proththd 47588 41prothprmlem2 47592 nnpw2evenALTV 47676 fpprmod 47701 fppr2odd 47705 dfwppr 47712 fpprwppr 47713 fpprwpprb 47714 pw2m1lepw2m1 48482 nnpw2blenfzo 48543 dignn0fr 48563 digexp 48569 dignn0flhalflem1 48577 |
| Copyright terms: Public domain | W3C validator |