Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zexpcl | Structured version Visualization version GIF version |
Description: Closure of exponentiation of integers. (Contributed by NM, 16-Dec-2005.) |
Ref | Expression |
---|---|
zexpcl | ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsscn 12257 | . 2 ⊢ ℤ ⊆ ℂ | |
2 | zmulcl 12299 | . 2 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ) | |
3 | 1z 12280 | . 2 ⊢ 1 ∈ ℤ | |
4 | 1, 2, 3 | expcllem 13721 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 (class class class)co 7255 ℕ0cn0 12163 ℤcz 12249 ↑cexp 13710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 df-exp 13711 |
This theorem is referenced by: zexpcld 13736 zsqcl 13776 modexp 13881 climcndslem1 15489 iddvdsexp 15917 dvdsexp2im 15964 dvdsexp 15965 3dvds 15968 prmdvdsexp 16348 rpexp 16355 rpexp12i 16357 phiprmpw 16405 eulerthlem2 16411 fermltl 16413 prmdiv 16414 prmdiveq 16415 odzcllem 16421 odzdvds 16424 odzphi 16425 vfermltlALT 16431 powm2modprm 16432 pcneg 16503 pcprmpw 16512 prmpwdvds 16533 pockthlem 16534 dyaddisjlem 24664 aalioulem1 25397 aaliou3lem6 25413 muf 26194 dvdsppwf1o 26240 mersenne 26280 lgslem1 26350 lgsval2lem 26360 lgsvalmod 26369 lgsmod 26376 lgsdirprm 26384 lgsne0 26388 lgsqrlem1 26399 gausslemma2dlem7 26426 gausslemma2d 26427 lgseisenlem2 26429 lgseisenlem4 26431 m1lgs 26441 2sqreultlem 26500 2sqreunnltlem 26503 znfermltl 31464 mdetlap 31684 oddpwdc 32221 nn0prpwlem 34438 nn0prpw 34439 knoppndvlem2 34620 aks4d1p3 40014 aks4d1p6 40017 dvdsexpim 40249 zexpgcd 40257 numdenexp 40258 jm2.18 40726 jm2.22 40733 jm2.23 40734 jm2.20nn 40735 inductionexd 41654 etransclem3 43668 etransclem7 43672 etransclem10 43675 etransclem24 43689 etransclem27 43692 etransclem35 43700 2pwp1prm 44929 sfprmdvdsmersenne 44943 lighneallem4b 44949 lighneallem4 44950 proththd 44954 41prothprmlem2 44958 nnpw2evenALTV 45042 fpprmod 45067 fppr2odd 45071 dfwppr 45078 fpprwppr 45079 fpprwpprb 45080 pw2m1lepw2m1 45749 nnpw2blenfzo 45815 dignn0fr 45835 digexp 45841 dignn0flhalflem1 45849 |
Copyright terms: Public domain | W3C validator |