| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zexpcl | Structured version Visualization version GIF version | ||
| Description: Closure of exponentiation of integers. (Contributed by NM, 16-Dec-2005.) |
| Ref | Expression |
|---|---|
| zexpcl | ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zsscn 12544 | . 2 ⊢ ℤ ⊆ ℂ | |
| 2 | zmulcl 12589 | . 2 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ) | |
| 3 | 1z 12570 | . 2 ⊢ 1 ∈ ℤ | |
| 4 | 1, 2, 3 | expcllem 14044 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7390 ℕ0cn0 12449 ℤcz 12536 ↑cexp 14033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-seq 13974 df-exp 14034 |
| This theorem is referenced by: zexpcld 14059 zsqcl 14101 modexp 14210 climcndslem1 15822 iddvdsexp 16256 dvdsexp2im 16304 dvdsexp 16305 3dvds 16308 dvdsexpim 16532 zexpgcd 16542 prmdvdsexp 16692 rpexp 16699 rpexp12i 16701 numdenexp 16737 phiprmpw 16753 eulerthlem2 16759 fermltl 16761 prmdiv 16762 prmdiveq 16763 odzcllem 16770 odzdvds 16773 odzphi 16774 vfermltlALT 16780 powm2modprm 16781 pcneg 16852 pcprmpw 16861 prmpwdvds 16882 pockthlem 16883 dyaddisjlem 25503 aalioulem1 26247 aaliou3lem6 26263 muf 27057 dvdsppwf1o 27103 mersenne 27145 lgslem1 27215 lgsval2lem 27225 lgsvalmod 27234 lgsmod 27241 lgsdirprm 27249 lgsne0 27253 lgsqrlem1 27264 gausslemma2dlem7 27291 gausslemma2d 27292 lgseisenlem2 27294 lgseisenlem4 27296 m1lgs 27306 2sqreultlem 27365 2sqreunnltlem 27368 znfermltl 33344 mdetlap 33829 oddpwdc 34352 nn0prpwlem 36317 nn0prpw 36318 knoppndvlem2 36508 aks4d1p3 42073 aks4d1p6 42076 aks6d1c2p2 42114 jm2.18 42984 jm2.22 42991 jm2.23 42992 jm2.20nn 42993 inductionexd 44151 etransclem3 46242 etransclem7 46246 etransclem10 46249 etransclem24 46263 etransclem27 46266 etransclem35 46274 2pwp1prm 47594 sfprmdvdsmersenne 47608 lighneallem4b 47614 lighneallem4 47615 proththd 47619 41prothprmlem2 47623 nnpw2evenALTV 47707 fpprmod 47732 fppr2odd 47736 dfwppr 47743 fpprwppr 47744 fpprwpprb 47745 pw2m1lepw2m1 48513 nnpw2blenfzo 48574 dignn0fr 48594 digexp 48600 dignn0flhalflem1 48608 |
| Copyright terms: Public domain | W3C validator |