![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zexpcl | Structured version Visualization version GIF version |
Description: Closure of exponentiation of integers. (Contributed by NM, 16-Dec-2005.) |
Ref | Expression |
---|---|
zexpcl | ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsscn 12619 | . 2 ⊢ ℤ ⊆ ℂ | |
2 | zmulcl 12664 | . 2 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ) | |
3 | 1z 12645 | . 2 ⊢ 1 ∈ ℤ | |
4 | 1, 2, 3 | expcllem 14110 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 (class class class)co 7431 ℕ0cn0 12524 ℤcz 12611 ↑cexp 14099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-seq 14040 df-exp 14100 |
This theorem is referenced by: zexpcld 14125 zsqcl 14166 modexp 14274 climcndslem1 15882 iddvdsexp 16314 dvdsexp2im 16361 dvdsexp 16362 3dvds 16365 dvdsexpim 16589 zexpgcd 16599 prmdvdsexp 16749 rpexp 16756 rpexp12i 16758 numdenexp 16794 phiprmpw 16810 eulerthlem2 16816 fermltl 16818 prmdiv 16819 prmdiveq 16820 odzcllem 16826 odzdvds 16829 odzphi 16830 vfermltlALT 16836 powm2modprm 16837 pcneg 16908 pcprmpw 16917 prmpwdvds 16938 pockthlem 16939 dyaddisjlem 25644 aalioulem1 26389 aaliou3lem6 26405 muf 27198 dvdsppwf1o 27244 mersenne 27286 lgslem1 27356 lgsval2lem 27366 lgsvalmod 27375 lgsmod 27382 lgsdirprm 27390 lgsne0 27394 lgsqrlem1 27405 gausslemma2dlem7 27432 gausslemma2d 27433 lgseisenlem2 27435 lgseisenlem4 27437 m1lgs 27447 2sqreultlem 27506 2sqreunnltlem 27509 znfermltl 33374 mdetlap 33793 oddpwdc 34336 nn0prpwlem 36305 nn0prpw 36306 knoppndvlem2 36496 aks4d1p3 42060 aks4d1p6 42063 aks6d1c2p2 42101 jm2.18 42977 jm2.22 42984 jm2.23 42985 jm2.20nn 42986 inductionexd 44145 etransclem3 46193 etransclem7 46197 etransclem10 46200 etransclem24 46214 etransclem27 46217 etransclem35 46225 2pwp1prm 47514 sfprmdvdsmersenne 47528 lighneallem4b 47534 lighneallem4 47535 proththd 47539 41prothprmlem2 47543 nnpw2evenALTV 47627 fpprmod 47652 fppr2odd 47656 dfwppr 47663 fpprwppr 47664 fpprwpprb 47665 pw2m1lepw2m1 48366 nnpw2blenfzo 48431 dignn0fr 48451 digexp 48457 dignn0flhalflem1 48465 |
Copyright terms: Public domain | W3C validator |