| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zexpcl | Structured version Visualization version GIF version | ||
| Description: Closure of exponentiation of integers. (Contributed by NM, 16-Dec-2005.) |
| Ref | Expression |
|---|---|
| zexpcl | ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zsscn 12498 | . 2 ⊢ ℤ ⊆ ℂ | |
| 2 | zmulcl 12543 | . 2 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ) | |
| 3 | 1z 12524 | . 2 ⊢ 1 ∈ ℤ | |
| 4 | 1, 2, 3 | expcllem 13998 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7353 ℕ0cn0 12403 ℤcz 12490 ↑cexp 13987 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-n0 12404 df-z 12491 df-uz 12755 df-seq 13928 df-exp 13988 |
| This theorem is referenced by: zexpcld 14013 zsqcl 14055 modexp 14164 climcndslem1 15775 iddvdsexp 16209 dvdsexp2im 16257 dvdsexp 16258 3dvds 16261 dvdsexpim 16485 zexpgcd 16495 prmdvdsexp 16645 rpexp 16652 rpexp12i 16654 numdenexp 16690 phiprmpw 16706 eulerthlem2 16712 fermltl 16714 prmdiv 16715 prmdiveq 16716 odzcllem 16723 odzdvds 16726 odzphi 16727 vfermltlALT 16733 powm2modprm 16734 pcneg 16805 pcprmpw 16814 prmpwdvds 16835 pockthlem 16836 dyaddisjlem 25513 aalioulem1 26257 aaliou3lem6 26273 muf 27067 dvdsppwf1o 27113 mersenne 27155 lgslem1 27225 lgsval2lem 27235 lgsvalmod 27244 lgsmod 27251 lgsdirprm 27259 lgsne0 27263 lgsqrlem1 27274 gausslemma2dlem7 27301 gausslemma2d 27302 lgseisenlem2 27304 lgseisenlem4 27306 m1lgs 27316 2sqreultlem 27375 2sqreunnltlem 27378 znfermltl 33322 mdetlap 33818 oddpwdc 34341 nn0prpwlem 36315 nn0prpw 36316 knoppndvlem2 36506 aks4d1p3 42071 aks4d1p6 42074 aks6d1c2p2 42112 jm2.18 42981 jm2.22 42988 jm2.23 42989 jm2.20nn 42990 inductionexd 44148 etransclem3 46238 etransclem7 46242 etransclem10 46245 etransclem24 46259 etransclem27 46262 etransclem35 46270 2pwp1prm 47593 sfprmdvdsmersenne 47607 lighneallem4b 47613 lighneallem4 47614 proththd 47618 41prothprmlem2 47622 nnpw2evenALTV 47706 fpprmod 47731 fppr2odd 47735 dfwppr 47742 fpprwppr 47743 fpprwpprb 47744 pw2m1lepw2m1 48525 nnpw2blenfzo 48586 dignn0fr 48606 digexp 48612 dignn0flhalflem1 48620 |
| Copyright terms: Public domain | W3C validator |