| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zexpcl | Structured version Visualization version GIF version | ||
| Description: Closure of exponentiation of integers. (Contributed by NM, 16-Dec-2005.) |
| Ref | Expression |
|---|---|
| zexpcl | ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zsscn 12596 | . 2 ⊢ ℤ ⊆ ℂ | |
| 2 | zmulcl 12641 | . 2 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ) | |
| 3 | 1z 12622 | . 2 ⊢ 1 ∈ ℤ | |
| 4 | 1, 2, 3 | expcllem 14090 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 (class class class)co 7405 ℕ0cn0 12501 ℤcz 12588 ↑cexp 14079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-seq 14020 df-exp 14080 |
| This theorem is referenced by: zexpcld 14105 zsqcl 14147 modexp 14256 climcndslem1 15865 iddvdsexp 16299 dvdsexp2im 16346 dvdsexp 16347 3dvds 16350 dvdsexpim 16574 zexpgcd 16584 prmdvdsexp 16734 rpexp 16741 rpexp12i 16743 numdenexp 16779 phiprmpw 16795 eulerthlem2 16801 fermltl 16803 prmdiv 16804 prmdiveq 16805 odzcllem 16812 odzdvds 16815 odzphi 16816 vfermltlALT 16822 powm2modprm 16823 pcneg 16894 pcprmpw 16903 prmpwdvds 16924 pockthlem 16925 dyaddisjlem 25548 aalioulem1 26292 aaliou3lem6 26308 muf 27102 dvdsppwf1o 27148 mersenne 27190 lgslem1 27260 lgsval2lem 27270 lgsvalmod 27279 lgsmod 27286 lgsdirprm 27294 lgsne0 27298 lgsqrlem1 27309 gausslemma2dlem7 27336 gausslemma2d 27337 lgseisenlem2 27339 lgseisenlem4 27341 m1lgs 27351 2sqreultlem 27410 2sqreunnltlem 27413 znfermltl 33381 mdetlap 33863 oddpwdc 34386 nn0prpwlem 36340 nn0prpw 36341 knoppndvlem2 36531 aks4d1p3 42091 aks4d1p6 42094 aks6d1c2p2 42132 jm2.18 43012 jm2.22 43019 jm2.23 43020 jm2.20nn 43021 inductionexd 44179 etransclem3 46266 etransclem7 46270 etransclem10 46273 etransclem24 46287 etransclem27 46290 etransclem35 46298 2pwp1prm 47603 sfprmdvdsmersenne 47617 lighneallem4b 47623 lighneallem4 47624 proththd 47628 41prothprmlem2 47632 nnpw2evenALTV 47716 fpprmod 47741 fppr2odd 47745 dfwppr 47752 fpprwppr 47753 fpprwpprb 47754 pw2m1lepw2m1 48496 nnpw2blenfzo 48561 dignn0fr 48581 digexp 48587 dignn0flhalflem1 48595 |
| Copyright terms: Public domain | W3C validator |