Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zexpcl | Structured version Visualization version GIF version |
Description: Closure of exponentiation of integers. (Contributed by NM, 16-Dec-2005.) |
Ref | Expression |
---|---|
zexpcl | ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsscn 12315 | . 2 ⊢ ℤ ⊆ ℂ | |
2 | zmulcl 12357 | . 2 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ) | |
3 | 1z 12338 | . 2 ⊢ 1 ∈ ℤ | |
4 | 1, 2, 3 | expcllem 13781 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 (class class class)co 7268 ℕ0cn0 12221 ℤcz 12307 ↑cexp 13770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-cnex 10915 ax-resscn 10916 ax-1cn 10917 ax-icn 10918 ax-addcl 10919 ax-addrcl 10920 ax-mulcl 10921 ax-mulrcl 10922 ax-mulcom 10923 ax-addass 10924 ax-mulass 10925 ax-distr 10926 ax-i2m1 10927 ax-1ne0 10928 ax-1rid 10929 ax-rnegex 10930 ax-rrecex 10931 ax-cnre 10932 ax-pre-lttri 10933 ax-pre-lttrn 10934 ax-pre-ltadd 10935 ax-pre-mulgt0 10936 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7704 df-2nd 7822 df-frecs 8085 df-wrecs 8116 df-recs 8190 df-rdg 8229 df-er 8486 df-en 8722 df-dom 8723 df-sdom 8724 df-pnf 10999 df-mnf 11000 df-xr 11001 df-ltxr 11002 df-le 11003 df-sub 11195 df-neg 11196 df-nn 11962 df-n0 12222 df-z 12308 df-uz 12571 df-seq 13710 df-exp 13771 |
This theorem is referenced by: zexpcld 13796 zsqcl 13836 modexp 13941 climcndslem1 15549 iddvdsexp 15977 dvdsexp2im 16024 dvdsexp 16025 3dvds 16028 prmdvdsexp 16408 rpexp 16415 rpexp12i 16417 phiprmpw 16465 eulerthlem2 16471 fermltl 16473 prmdiv 16474 prmdiveq 16475 odzcllem 16481 odzdvds 16484 odzphi 16485 vfermltlALT 16491 powm2modprm 16492 pcneg 16563 pcprmpw 16572 prmpwdvds 16593 pockthlem 16594 dyaddisjlem 24747 aalioulem1 25480 aaliou3lem6 25496 muf 26277 dvdsppwf1o 26323 mersenne 26363 lgslem1 26433 lgsval2lem 26443 lgsvalmod 26452 lgsmod 26459 lgsdirprm 26467 lgsne0 26471 lgsqrlem1 26482 gausslemma2dlem7 26509 gausslemma2d 26510 lgseisenlem2 26512 lgseisenlem4 26514 m1lgs 26524 2sqreultlem 26583 2sqreunnltlem 26586 znfermltl 31548 mdetlap 31768 oddpwdc 32307 nn0prpwlem 34497 nn0prpw 34498 knoppndvlem2 34679 aks4d1p3 40072 aks4d1p6 40075 dvdsexpim 40314 zexpgcd 40322 numdenexp 40323 jm2.18 40796 jm2.22 40803 jm2.23 40804 jm2.20nn 40805 inductionexd 41724 etransclem3 43737 etransclem7 43741 etransclem10 43744 etransclem24 43758 etransclem27 43761 etransclem35 43769 2pwp1prm 44997 sfprmdvdsmersenne 45011 lighneallem4b 45017 lighneallem4 45018 proththd 45022 41prothprmlem2 45026 nnpw2evenALTV 45110 fpprmod 45135 fppr2odd 45139 dfwppr 45146 fpprwppr 45147 fpprwpprb 45148 pw2m1lepw2m1 45817 nnpw2blenfzo 45883 dignn0fr 45903 digexp 45909 dignn0flhalflem1 45917 |
Copyright terms: Public domain | W3C validator |