| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zexpcl | Structured version Visualization version GIF version | ||
| Description: Closure of exponentiation of integers. (Contributed by NM, 16-Dec-2005.) |
| Ref | Expression |
|---|---|
| zexpcl | ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zsscn 12604 | . 2 ⊢ ℤ ⊆ ℂ | |
| 2 | zmulcl 12649 | . 2 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ) | |
| 3 | 1z 12630 | . 2 ⊢ 1 ∈ ℤ | |
| 4 | 1, 2, 3 | expcllem 14095 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 (class class class)co 7413 ℕ0cn0 12509 ℤcz 12596 ↑cexp 14084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-n0 12510 df-z 12597 df-uz 12861 df-seq 14025 df-exp 14085 |
| This theorem is referenced by: zexpcld 14110 zsqcl 14151 modexp 14259 climcndslem1 15867 iddvdsexp 16299 dvdsexp2im 16346 dvdsexp 16347 3dvds 16350 dvdsexpim 16574 zexpgcd 16584 prmdvdsexp 16734 rpexp 16741 rpexp12i 16743 numdenexp 16779 phiprmpw 16795 eulerthlem2 16801 fermltl 16803 prmdiv 16804 prmdiveq 16805 odzcllem 16812 odzdvds 16815 odzphi 16816 vfermltlALT 16822 powm2modprm 16823 pcneg 16894 pcprmpw 16903 prmpwdvds 16924 pockthlem 16925 dyaddisjlem 25566 aalioulem1 26310 aaliou3lem6 26326 muf 27119 dvdsppwf1o 27165 mersenne 27207 lgslem1 27277 lgsval2lem 27287 lgsvalmod 27296 lgsmod 27303 lgsdirprm 27311 lgsne0 27315 lgsqrlem1 27326 gausslemma2dlem7 27353 gausslemma2d 27354 lgseisenlem2 27356 lgseisenlem4 27358 m1lgs 27368 2sqreultlem 27427 2sqreunnltlem 27430 znfermltl 33329 mdetlap 33790 oddpwdc 34315 nn0prpwlem 36282 nn0prpw 36283 knoppndvlem2 36473 aks4d1p3 42038 aks4d1p6 42041 aks6d1c2p2 42079 jm2.18 42963 jm2.22 42970 jm2.23 42971 jm2.20nn 42972 inductionexd 44130 etransclem3 46209 etransclem7 46213 etransclem10 46216 etransclem24 46230 etransclem27 46233 etransclem35 46241 2pwp1prm 47534 sfprmdvdsmersenne 47548 lighneallem4b 47554 lighneallem4 47555 proththd 47559 41prothprmlem2 47563 nnpw2evenALTV 47647 fpprmod 47672 fppr2odd 47676 dfwppr 47683 fpprwppr 47684 fpprwpprb 47685 pw2m1lepw2m1 48395 nnpw2blenfzo 48460 dignn0fr 48480 digexp 48486 dignn0flhalflem1 48494 |
| Copyright terms: Public domain | W3C validator |