| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zexpcl | Structured version Visualization version GIF version | ||
| Description: Closure of exponentiation of integers. (Contributed by NM, 16-Dec-2005.) |
| Ref | Expression |
|---|---|
| zexpcl | ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zsscn 12537 | . 2 ⊢ ℤ ⊆ ℂ | |
| 2 | zmulcl 12582 | . 2 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ) | |
| 3 | 1z 12563 | . 2 ⊢ 1 ∈ ℤ | |
| 4 | 1, 2, 3 | expcllem 14037 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7387 ℕ0cn0 12442 ℤcz 12529 ↑cexp 14026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-seq 13967 df-exp 14027 |
| This theorem is referenced by: zexpcld 14052 zsqcl 14094 modexp 14203 climcndslem1 15815 iddvdsexp 16249 dvdsexp2im 16297 dvdsexp 16298 3dvds 16301 dvdsexpim 16525 zexpgcd 16535 prmdvdsexp 16685 rpexp 16692 rpexp12i 16694 numdenexp 16730 phiprmpw 16746 eulerthlem2 16752 fermltl 16754 prmdiv 16755 prmdiveq 16756 odzcllem 16763 odzdvds 16766 odzphi 16767 vfermltlALT 16773 powm2modprm 16774 pcneg 16845 pcprmpw 16854 prmpwdvds 16875 pockthlem 16876 dyaddisjlem 25496 aalioulem1 26240 aaliou3lem6 26256 muf 27050 dvdsppwf1o 27096 mersenne 27138 lgslem1 27208 lgsval2lem 27218 lgsvalmod 27227 lgsmod 27234 lgsdirprm 27242 lgsne0 27246 lgsqrlem1 27257 gausslemma2dlem7 27284 gausslemma2d 27285 lgseisenlem2 27287 lgseisenlem4 27289 m1lgs 27299 2sqreultlem 27358 2sqreunnltlem 27361 znfermltl 33337 mdetlap 33822 oddpwdc 34345 nn0prpwlem 36310 nn0prpw 36311 knoppndvlem2 36501 aks4d1p3 42066 aks4d1p6 42069 aks6d1c2p2 42107 jm2.18 42977 jm2.22 42984 jm2.23 42985 jm2.20nn 42986 inductionexd 44144 etransclem3 46235 etransclem7 46239 etransclem10 46242 etransclem24 46256 etransclem27 46259 etransclem35 46267 2pwp1prm 47590 sfprmdvdsmersenne 47604 lighneallem4b 47610 lighneallem4 47611 proththd 47615 41prothprmlem2 47619 nnpw2evenALTV 47703 fpprmod 47728 fppr2odd 47732 dfwppr 47739 fpprwppr 47740 fpprwpprb 47741 pw2m1lepw2m1 48509 nnpw2blenfzo 48570 dignn0fr 48590 digexp 48596 dignn0flhalflem1 48604 |
| Copyright terms: Public domain | W3C validator |