| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zexpcl | Structured version Visualization version GIF version | ||
| Description: Closure of exponentiation of integers. (Contributed by NM, 16-Dec-2005.) |
| Ref | Expression |
|---|---|
| zexpcl | ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zsscn 12487 | . 2 ⊢ ℤ ⊆ ℂ | |
| 2 | zmulcl 12531 | . 2 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ) | |
| 3 | 1z 12512 | . 2 ⊢ 1 ∈ ℤ | |
| 4 | 1, 2, 3 | expcllem 13986 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 (class class class)co 7355 ℕ0cn0 12392 ℤcz 12479 ↑cexp 13975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-n0 12393 df-z 12480 df-uz 12743 df-seq 13916 df-exp 13976 |
| This theorem is referenced by: zexpcld 14001 zsqcl 14043 modexp 14152 climcndslem1 15763 iddvdsexp 16197 dvdsexp2im 16245 dvdsexp 16246 3dvds 16249 dvdsexpim 16473 zexpgcd 16483 prmdvdsexp 16633 rpexp 16640 rpexp12i 16642 numdenexp 16678 phiprmpw 16694 eulerthlem2 16700 fermltl 16702 prmdiv 16703 prmdiveq 16704 odzcllem 16711 odzdvds 16714 odzphi 16715 vfermltlALT 16721 powm2modprm 16722 pcneg 16793 pcprmpw 16802 prmpwdvds 16823 pockthlem 16824 dyaddisjlem 25543 aalioulem1 26287 aaliou3lem6 26303 muf 27097 dvdsppwf1o 27143 mersenne 27185 lgslem1 27255 lgsval2lem 27265 lgsvalmod 27274 lgsmod 27281 lgsdirprm 27289 lgsne0 27293 lgsqrlem1 27304 gausslemma2dlem7 27331 gausslemma2d 27332 lgseisenlem2 27334 lgseisenlem4 27336 m1lgs 27346 2sqreultlem 27405 2sqreunnltlem 27408 znfermltl 33375 mdetlap 33917 oddpwdc 34439 nn0prpwlem 36438 nn0prpw 36439 knoppndvlem2 36629 aks4d1p3 42244 aks4d1p6 42247 aks6d1c2p2 42285 jm2.18 43145 jm2.22 43152 jm2.23 43153 jm2.20nn 43154 inductionexd 44312 etransclem3 46397 etransclem7 46401 etransclem10 46404 etransclem24 46418 etransclem27 46421 etransclem35 46429 2pwp1prm 47751 sfprmdvdsmersenne 47765 lighneallem4b 47771 lighneallem4 47772 proththd 47776 41prothprmlem2 47780 nnpw2evenALTV 47864 fpprmod 47889 fppr2odd 47893 dfwppr 47900 fpprwppr 47901 fpprwpprb 47902 pw2m1lepw2m1 48682 nnpw2blenfzo 48743 dignn0fr 48763 digexp 48769 dignn0flhalflem1 48777 |
| Copyright terms: Public domain | W3C validator |