![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zexpcl | Structured version Visualization version GIF version |
Description: Closure of exponentiation of integers. (Contributed by NM, 16-Dec-2005.) |
Ref | Expression |
---|---|
zexpcl | ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsscn 12647 | . 2 ⊢ ℤ ⊆ ℂ | |
2 | zmulcl 12692 | . 2 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ) | |
3 | 1z 12673 | . 2 ⊢ 1 ∈ ℤ | |
4 | 1, 2, 3 | expcllem 14123 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 (class class class)co 7448 ℕ0cn0 12553 ℤcz 12639 ↑cexp 14112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-seq 14053 df-exp 14113 |
This theorem is referenced by: zexpcld 14138 zsqcl 14179 modexp 14287 climcndslem1 15897 iddvdsexp 16328 dvdsexp2im 16375 dvdsexp 16376 3dvds 16379 dvdsexpim 16602 zexpgcd 16612 prmdvdsexp 16762 rpexp 16769 rpexp12i 16771 numdenexp 16807 phiprmpw 16823 eulerthlem2 16829 fermltl 16831 prmdiv 16832 prmdiveq 16833 odzcllem 16839 odzdvds 16842 odzphi 16843 vfermltlALT 16849 powm2modprm 16850 pcneg 16921 pcprmpw 16930 prmpwdvds 16951 pockthlem 16952 dyaddisjlem 25649 aalioulem1 26392 aaliou3lem6 26408 muf 27201 dvdsppwf1o 27247 mersenne 27289 lgslem1 27359 lgsval2lem 27369 lgsvalmod 27378 lgsmod 27385 lgsdirprm 27393 lgsne0 27397 lgsqrlem1 27408 gausslemma2dlem7 27435 gausslemma2d 27436 lgseisenlem2 27438 lgseisenlem4 27440 m1lgs 27450 2sqreultlem 27509 2sqreunnltlem 27512 znfermltl 33359 mdetlap 33778 oddpwdc 34319 nn0prpwlem 36288 nn0prpw 36289 knoppndvlem2 36479 aks4d1p3 42035 aks4d1p6 42038 aks6d1c2p2 42076 jm2.18 42945 jm2.22 42952 jm2.23 42953 jm2.20nn 42954 inductionexd 44117 etransclem3 46158 etransclem7 46162 etransclem10 46165 etransclem24 46179 etransclem27 46182 etransclem35 46190 2pwp1prm 47463 sfprmdvdsmersenne 47477 lighneallem4b 47483 lighneallem4 47484 proththd 47488 41prothprmlem2 47492 nnpw2evenALTV 47576 fpprmod 47601 fppr2odd 47605 dfwppr 47612 fpprwppr 47613 fpprwpprb 47614 pw2m1lepw2m1 48249 nnpw2blenfzo 48315 dignn0fr 48335 digexp 48341 dignn0flhalflem1 48349 |
Copyright terms: Public domain | W3C validator |